B.Sc. Part-II (Semester-III) Examination

MATHEMATICS (New)

(Advanced Calculus)

			Pape	rV			
Time	: Tł	ree :	Hours]		[Maximum Marks : 60		
			 (1) Question No. 1 is compulsory (2) Attempt ONE question from the correct alternative : 	-			
	(i)	11 (1	-				
		(a)	Unbounded	(b)	Convergent		
		(c)	Divergent	(d)	Oscillatory 1		
	(ii)	The	sequence defined by $s_n = \frac{1}{n+1}$ is	bounded	and		
		(a)	Monotone increasing	(b)	Monotone decreasing		
		(c)	Oscillatory	(d)	None of these 1		
	(iii)		$\sum a_{n_i}$ be a series of positive terms sonvergent if:	uch that	$\lim_{n \to \infty} \sqrt[n]{a_n} = \ell , a_n \ge 0, \forall n. \text{ Then } \sum a_n$		
			_	/L\	4 - 1		
		(a)	$\ell = 1$		ℓ < 1		
		(c)	ℓ > 1	(d)	$\ell = 0$		
((iv)	The	series $x_n = \frac{1}{n^2 + 2}$ is:				
		(a)	Convergent	(b)	Divergent		
		(c)	Oscillatory	(d)	None of these 1		
VTM-	-133	64	1	!	(Contd.)		

(v)	Īf	$\lim_{x \to \infty} f(x, y) \neq f(x, y, y) \text{ then}$				
(v)	, (1	$\lim_{(x,y)\to(x_0,y_0)} f(x,y) \neq f(x_0,y_0)$ then	•			
	(a)	f is continuous				
	(b)	f is discontinuous				
	(c)	function f fails to be continuous at	$(\mathbf{x}_0, \mathbf{y}_0)$			
	(d)	Both (b) and (c)		1		
(vi)	The neighbourhood $N_8(x_0, y_0) - \{(x_0, y_0)\}$ is called as :					
	(a)	δ-nbd	(b)	Rectangular nbd of (x_0, y_0)		
	(c)	Deleted δ-nbd	(d)	None of these		
(vii)	If x	= $r \cos \theta$ y = $r \sin \theta$ then Jacobia	$\mathbf{n} \ \mathbf{J} = \frac{\partial (\mathbf{j} - \mathbf{j})}{\partial \mathbf{j}}$	$\frac{(x, y)}{(r, \theta)}$ is:		
	(a)	r	(b)	$\frac{1}{r}$		
١	(c)	r^2	(d)	$\frac{1}{r^2}$		
(viii)	ope			f two variables which is defined in the second order partial derivative in D		
	(a)	f has local maximum at (x_0, y_0)				
	(b)	f has local minimum at (x_0, y_0)				
	(c) f has neither maximum nor minimum at (x_0, y_0)					
	(d)	the test is inconclusive		1		
ix)	In transforming double integral to polar co-ordinates we use dxdy =					
	(a)	$drd\theta$	(b)	$rdrd\theta$		
	(c)	$\frac{1}{r}$ drd θ	(d)	$\frac{d\mathbf{r}}{d\theta}$		
1336	64	2		(Contd.)		

- (x) The value of $\iiint_{0} dx dy dz$ is:
 - (a) 1

(b) 0

(c) 2

(d) 3

1

3

UNIT-I

- 2. (a) Every convergent sequence of real numbers is a Cauchy Sequence. Prove this.
 - (b) Let $\langle s_n \rangle$ be a sequence such that $\lim_{n \to \infty} s_n = \ell$ and $s_n \ge 0 \ \forall \ n \in \mathbb{N}$. Then prove $\ell \ge 0$.
 - (c) Show that the sequence $\langle s_n \rangle$ defined by $s_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$ converges.
- (p) Prove that a monotonic sequence of real numbers is convergent if and only if it is bounded.
 - (q) Evaluate $\lim_{n \to \infty} s_n$ for $s_n = \sqrt{n+a} \sqrt{n+b}$, $a \ne b$.
 - (r) Let $\langle x_n \rangle$ be a sequence of real numbers and for each $n \in \mathbb{N}$. Let $s_n = x_1 + x_2 + ... + x_n$ and $t_n = |x_1| + |x_2| + ... + |x_n|$. Prove that if $\langle t_n \rangle$ is a Cauchy sequence then $\langle s_n \rangle$ is Cauchy sequence.

UNIT--II

- 4. (a) Show that $\sum \frac{1}{(2n+1)^3}$ is convergent and $\sum \frac{1}{(2n-1)^{1/2}}$ is divergent.
 - (b) Let $\sum_{n=1}^{\infty} a_n$ be a sequence of real numbers such that $\ell = \lim_{n \to \infty} \sqrt[n]{a_n}$, $a_n \ge 0$, $\forall n$. Then prove that $\sum a_n$ is convergent if $\ell < 1$.
 - (c) A series $\sum x_n$ of non-negative terms then prove that the sequence $\langle s_n \rangle$ of partial sum is monotonic increasing.

VTM--13364 3 (Contd.)

- (p) Show that an absolutely convergent series is convergent but its converse necessarily does not hold.
 - (q) Test the convergence of the serie: $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$, p > 0 by Cauchy's Integral Test. 4
 - (r) Test the convergence of $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + ...$

UNIT-III

- 6. (a) Let f(x, y) be defined and continuous in the open region D and let $f(x_1, y_1) = z_1$, $f(x_2, y_2) = z_2$, $z_1 \neq z_2$. Then for every number z_0 between z_1 and z_2 , there is a point (x_0, y_0) of D for which $f(x_0, y_0) = z_0$, prove this.
 - (b) Using $\in -\delta$ definition of a limit of a function, prove that $\lim_{(x, y) \to (4, -1)} (3x 2y) = 14$.
 - (c) Expand $f(x, y) = x^2 y^2 + 3xy$ at the point (1, 2) by using Taylor's theorem.

3

- 7. (p) Let real valued functions f and g be continuous in an open set D ⊆ R². Then prove that f + g is continuous in D.
 - (q) Let $f(x, y) = \frac{x^2y^2}{x^2y^2 + (x y)^2}$, $x^2y^2 + (x y)^2 \neq 0$. Show that limit of the function f as $(x, y) \rightarrow (0, 0)$ does not exist even though iterated limits are equal.
 - (r) Expand exy at the point (2, 1) up to first three terms.

UNIT-IV

- 8. (a) If xu = yz, yv = xz, zw = xy, find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.
 - (b) Find the least distance of the origin from the plane x 2y + 2z = 9 by using Lagrange's method of multipliers.
 - (c) Find the extremum of sin A sin B sin C subject to the condition $A + B + C = \pi$.

VTM—13364 4 (Contd.)

- 9. (p) Let f(x, y) be defined in an open region D and it has a local maximum or local minimum at (x_0, y_0) ; if the partial derivative f_x and f_y exist at (x_0, y_0) , then $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$. Prove this.
 - (q) If $x + y = 2e^{\theta} \cos \phi$, $x y = 2ie^{\theta} \sin \phi$, show that JJ' = 1.
 - (r) Use the method of Lagrange multiplier to locate all local maxima and minima and also find the absolute maximum or minimum of $f(x, y) = x^2 + y^2$, where $x^4 + y^4 = 1$.

UNIT-V

- 10. (a) Evaluate $\iint_S \overline{F} \cdot \overline{n} ds$ where $\overline{F} = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$ and S is surface of rectangular parallelopiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$ by Gauss-divergence theorem.
 - (b) Apply Stoke's theorem to evaluate $\oint_C [(x + y)dx + (2x z)dy + (y + z)dz]$, where C is the boundary of the triangle with vertices (2, 0, 0), (0, 3, 0), (0, 0, 6).
- 11. (p) Evaluate the Double integral $\int_{0}^{\log 8 \log y} \int_{0}^{\exp x + y} dxdy$ 3
 - (q) Change the order of $\iint_D f(x, y) dxdy$, where D is bounded by parabolas $y^2 = x$ and $x^2 = y$.
 - (r) Evaluate $\int_{0}^{1} \int_{0}^{2(1-x)} \int_{0}^{2(1-x)-y} dz dy dx$.

www.sgbauonline.com