B.Sc. Part—II (Semester—III) Examination MATHEMATICS (UPTO S/17) (Old)

(Partial Differential Equations)

Paper-VI

Time: Three Hours]

[Maximum Marks: 60

Note: -(1) Question No. 1 is compulsory.

- (2) Solve ONE question from each Unit.
- Choose the correct alternatives :
 - (i) The condition for the PDE f(x, y, z, p, q) = 0 and g(x, y, z, p, q) = 0 to be compatible is:

(a)
$$J_{xz} + J_{yz} + pJ_{xp} + qJ_{zq} = 0$$

(b)
$$J_{xy} + pJ_{zp} + qJ_{zp} = 0$$

(c)
$$J_{xp} + J_{yq} + pJ_{zp} + qJ_{zq} = 0$$

(d) None of these

- (ii) A PDE z = px + qy + F(p, q) has the :
 - (a) Charpit's form

(b) Lagrange's form

(c) Monge's form

(d) Clairaut's form

(iii) Solution of the PDE (D + 2D' - 3) z = 0 is :

(a)
$$z = e^{-3x}F(y + 2x)$$

(b)
$$z = e^{3x}F(y - 2x)$$

(c)
$$z = e^{3x}F(2y - x)$$

(d)
$$z = e^{-3x}F(2y - x)$$

(iv) Particular integral of the PDE $(D^2 - D')z = e^{x-2y}$ is:

(a)
$$\frac{1}{3}e^{x-2y}$$

(c)
$$-\frac{1}{3}e^{x-2y}$$

(d) 0

(v) If $S^2 - 4RT < 0$, then reduced canonical form of the

PDE
$$Rr + Ss + Tt + F(x, y, z, p, q) = 0$$
 is:

(a) Parabolic

(b) Hyperbolic

(c) Elliptic

(d) None of these

VTM-13365

1

(Contd.)

	(vi)	ΛP	PDE $Z_{xx} + Z_{xy} - Y^2 Z_x = e^{xy^2}$ is:			
		(a)	Hyperbolic	(b)	Elliptic	
		(c)	Parabolic	(d)	None of these	
	(vii) The maximum point and the minimum point of a function f(x) are called the :					
		(a)	Stationary points	(b)	Critical points	
		(c)	Extremum points	(d)	None of these	
(viii) Λ function for which $\delta_1 = 0$ are called :						
		(a)	Continuous function	(b)	Identity function	
		(c)	Linear function	(d)	Stationary functions	
	(ix)	s) PDE $c^2u_{xy} = u_{tt}$ is:				
		(a)	Wave equation	(b)	Heat equation	
		(c)	Laplace equation	(d)	None of these	
	(x)	The general form of the first order PDE is:				
		(a)	f(x, y, p, q) = 0	(b)	F(x, p) = G(y, q)	
		(c)	f(z, p, q) = 0	(d)	f(x, y, z, p, q) = 0	10
UNIT—I						
2.	(a)	Solve the PDE $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$.				6
,	(b)	Obtain the PDE from equation $f(x + y + z, x^2 + y^2 + z^2) = 0$.				4
3.	(p)	Solve the PDE $z^2(p^2 + q^2) = x^2 + y^2$.				5
	(q)	Solve the PDE $z^2 = pqxy$ by Charpit's method.				5
UNIT—II						
4.	(a)	Solve the PDE $r + s - 6t = y \cos x$.				5
	as	(b) Solve the PDE $(D^2 - 4D'^2)z = \frac{4x}{v^2} - \frac{y}{x^2}$.				
	(b)	Solv	We the PDE $(D^2 - 4D^2)z = \frac{1}{y^2} - \frac{1}{y^2}$	$\frac{\sqrt{x^2}}{x^2}$.		5
5.	(p)	Solv	we the PDE D(D - 2D' - 3)z = e^{x+}	- 2y		5
	(q)	Solv	We the PDE $x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = x^2 y$			5
VTM13365				2		(Contd.)

UNIT-III

Solve the PDE $r - a^2t = 0$ by the Monge's method.

5

Reduce the Tricomi equation $Z_{xx} + xZ_{yy} = 0$, $x \neq 0$ to canonical form.

5

Reduce the equation $y^2r - 2xys + x^2t = \frac{y^2}{x}p + \frac{x^2}{y}q$ to canonical form and hence 7.

5 solve it. 5

Solve the PDE $r + t - rt + s^2 = 1$ by Monge's method.

UNIT-IV

- 8. Define the terms: (a)
 - Curves close in the sense of proximity of the zeroth order
 - Curves close in the sense of the first order proximity.

2+2=4

- State and prove the necessary condition for an extremum of a functional. 2+4=6
- 9. Define nth order distance. Find the distance between the curve $y(x) = xe^{-x}$, $y_1(x) = 0$ on [0, 2].
 - (q) Define k^{th} order proximity. Show that the curves $y(x) = \frac{\sin x}{n}$, where n is sufficiently large, 1+4=5and $y_n(x) = 0$ on $[0, \pi]$ are closed in the sense of proximity of any order. UNIT-V
- 10. (a) By the method of separation of variables solve the equation $\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial t} + u$. Given that $u(x, 0) = 6e^{-3x}$.
 - (b) Solve the boundary value problem $c^2u_{xx} = u_t$ for negative constant (i.e. $\lambda = -k^2$). Given that:
 - u(0, t) = 0, $u(\ell, t) = 0$, for all t

(ii) $u(x, 0) = f(x) = \begin{cases} x, & 0 < x < \ell/2 \\ \ell - x, & \ell/2 < x < \ell \end{cases}$ 5

11. (p) Solve by separation method:

 $\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0.$ 5

(q) A tightly stretched string with fixed end points x = 0 and $x = \ell$ in the shape defined by $y = kx(\ell - x)$ where k is constant, released from this position of rest. Find y(x, t), if the

vertical displacement is $\frac{\partial^2 y}{\partial x^2} = c^2 \frac{\partial^2 y}{\partial x^2}$. 5

VIM-13365

1050

www.sgbauonline.com