B.Sc. (Part—III) Semester-VI Examination MATHEMATICS (OLD) (UPTO WINTER-2018) (Graph Theory)

Paper—XII

Tim	ne : T	hree	Hours]		[Maximum Ma	ırks : 60						
Not	e :—	(1)	Question No. 1 is compulsory and a	ittempt it	at once.							
		(2)	Attempt ONE question from each u	nit.								
1.	Cho	ose t	the correct alternative :									
	(i)	Vert	ices with which a walk begins and ends are called									
		(a)	Terminal vertices	(b)	Isolated vertices							
		(c)	Pendent vertices	(d)	None of these	1						
	(ii)	The	number of vertices of odd degree in	s always								
		(a)	Even	(b)	Odd							
		(c)	Even and odd	(d)	None of these	1						
	(iii)	In a	ny tree (with two or more vertices), the	here are at	least pendent	vertices.						
		(a)	1	(b)	2							
		(c)	3	(d)	4	1						
	(iv)	The	length of the longest path in a tree is called its .									
		(a)	Centre	(b)	Radius							
		(c)	Diameter	(d)	Walk	1						
	(v)	Nun	nber of edges in the smallest cut-set	ected graph is called as _								
		(a)	Vertex connectivity	(b)	Edge connectivity							
		(c)	Separability	(d)	None of these	1						
	(vi)	The	form .la $n-e+f=2$ for planar graph	is given b	у							
		(a)	Euler	(b)	Caley							
		(c)	Kuratowski	(d)	Hamiltonian	1						
	(vii)	The	dot product of two vectors, one cor if the number of edges common			her g' is						
	•	(a)	Zero	(b)	One							
		(c)	Two	(d)	Three	1						
	(viii)	The	set of all in W _G forms a sul	bspace W _f	•							
		(a)	Circuit vectors	(b)	Cut-set vectors							
		(c)	Circuit and cut-set vertices	(d)	None of these	1						
WP	Z337	77	1			(Contd.)						

(ix)	If B is a	circuit	matrix	of a	connected	${\sf graph}$	G	with	e ed	ges	and	n v	vertices	then	rank
	of B is:														

(a) e-n+1

(b) e+n-1

(c) n-1

(d) n+1

(x) In cut-set matrix column with all _____ corresponds to an edge forming a self-loop.

(a) Ones

(b) Edges

(c) Vertices

(d) Zeros

1

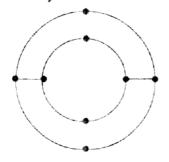
1

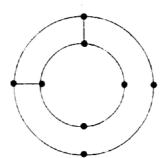
UNIT--I

- (a) Define Hamiltonian circuit. If n is an odd number ≥ 3 then prove that in a complete with n vertices there are (n-1)/2 edge-disjoint Hamiltonian circuit.
 - (b) Explain Konigsberg Bridge Problem.

5

3. (p) Define isomorphism between two graphs. Find whether the following graphs are isomorphic or not and why?





5

(q) Prove that a graph G is disconnected if and only if its vertex set V can be partitioned into two nonempty, disjoint subsets V₁ and V₂ such that there exist no edge in G whose one end vertex is in subset V₁ and the other in subset V₂.

UNIT-II

- (a) Define minimally connected graph. Prove that a graph is a tree if and only if it is minimally connected.
 - (b) Define tree. If G is a graph with n vertices then prove that following statements are equivalent:
 - (i) G is a tree
 - (ii) G is connected and has n-1 edges.

1+4

5. (p) Define centre of a tree and show that every tree has either one or two centers.

1+4

(q) Prove that for any connected graph with n-vertices, e-edges, its spanning tree has n-1 branches and e-n+1 chords.

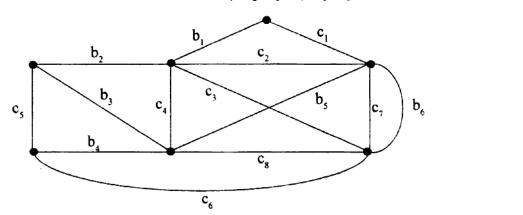
WPZ-3377

(Contd.)

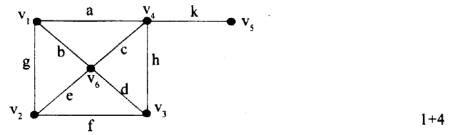
2

UNIT-III

- 6. (a) Define edge connectivity and vertex connectivity. Prove that the vertex connectivity of any graph G can never exceed the edge connectivity of G.
 - (b) For the following graph G, find rank of G, nullity of G and fundamental circuits with reference to the spanning tree: $T = \{b_1, b_2, b_3, b_4, b_5, b_6\}$.



7. (p) Define cutset. List all the cut sets in the following graph:

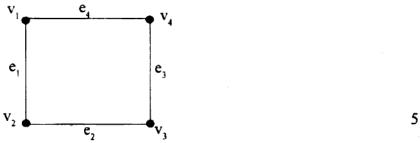


5

(q) Define planar graph. Show that Kuratowski's K_{3,3} graph is non-planar. 1+4

UNIT-IV

- 8. (a) Prove that W_{Γ} of all circuits vectors including zero vector in W_{G} forms a subspace of W_{G} .
 - (b) Let G be a graph given in a figure. Find W_{\lceil} , W_{s} , $W_{\lceil} \cap W_{s}$ and $W_{\lceil} \cup W_{s}$ where W_{\lceil} is a circuit subspace and W_{s} is a cut-set subspace.

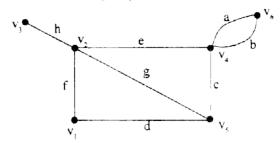


- (p) Prove that the dimension of the cut-set subspace W_s is equal to the rank r of the graph and the number of cut-set vector (including O) in W_s is 2^r.
 - (q) In the vector space of a graph prove that the circuit space and cut-set subspace are orthogonal to each other.

WPZ—3377 3 (Contd.)

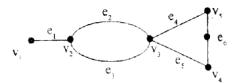
UNIT---V

- 10. (a) Let A(G) be an incidence matrix of a connected graph G with n vertices. Prove that an (n-1) × (n-1) submatrix of A(G) is non singular if and only if n-1 edges corresponding to the n-1 columns of this matrix constitute a spanning tree in G.
 - (b) Find the path matrix P(V3, V4) and circuit matrix B(G) of the following graph G.



11. (p) Prove that if an incidence matrix of a connected graph G with n vertices then the rank of A(G) is n-1.

(q) Find incidence matrix A(G) and adjacency matrix X(G) for the graph.



5

5

WPZ--3377