AP-444

B.Sc. Part-II (Semester—III) Examination 3S: PHYSICS

Time: Three Hours	[Maximum Marks: 80				
N.B. :— (1)	ALL questions are compulsory.				
(2)	Draw neat diagram wherever necessary.				
1. (A) Fill in the blanks:					
(i) Elec	etric flux is a quantity.				
(ii) If the value of Hall coefficient is negative then sample is type semiconductor.					
(iii) For normal operation of transistor, the collector base junction must be in biased.					
(iv) Ozo	one layer is located in 2				
(B) Choose correct alternative:					
(i) SI unit of conductivity is:					
(a)	Ohm ⁻¹ meter ⁻¹ (b) Ohm ⁻¹ cm ⁻¹				
(c)	Ohm. cm (d) Ohm-meter				
UWO-45309(Re)	1 (Contd.)				

25.7%		TOTOLT!	•		
(ii)	А	FET	15	23	
(AL /			T13	44	

- (a) bipolar device
- (b) unipolar device
- (c) bipolar or unipolar device
- (d) bipolar and unipolar device
- (iii) A rocket moves with velocity 0.7 C. Velocity of light w.r.to rocket is:
 - (a) (c + v)
- (b) (c v)
- (c) $(c + v^2)$
- (d) c
- (iv) The colour of light emitted by LED depends on :
 - (a) voltage applied
 - (b) current flowing through it
 - (c) the type of semiconducting material used
 - (d) all of the above

2

- (C) Answer in one sentence:
 - (i) What is Fermi level?
 - (ii) Define CMRR.
 - (iii) What is inertial frame of reference?

2

(iv) What is an earthquake?

4

(Contd.)

OR

13. (P) Explain the parts of earth as a planet.

6

(Q) Explain the types of earthquakes on the basis of depth of focus, magnitude of earthquake and the cause of their origin.

UWO-45309(Re)

UWO-45309(Re)

7

200

(C) When a meter stick is projected into space; its length appears to be contracted to 50 cm, calculate velocity of its projection.

OR

- 11. (P) Obtain an expression for relativistic addition of velocities.
 - (Q) Derive $E = mc^2$.
 - (R) Calculate the energy in killo-watt hour, when 2 gm matter is converted completely into energy. (Given 1 kWH = 3.6×10^6 Joules)

EITHER

- 12. (A) Explain the interior structure of the earth with suitable diagram.
 - (B) Explain the scattering, absorption and reflection of solar radiation by atmosphere.
 - (C) Define the terms:
 - (i) Focus
 - (ii) Epicentre of an earthquake.

2

UWO-45309(Re)

6

(Contd.)

EITHER

- (A) Define the gradient of scalar field. Give its physical significance.
 - (B) State and prove Gauss's divergence theorem. 6
 - (C) Explain line integral.

OR

- 3. (P) Derive an expression for work done on charge in an electrostatic field.
 - (Q) Explain flux of electric field.
 - (R) State and prove Ampere's circuital law. 4
 - 5) Explain Lorentz Force equation. 2

EITHER

4. (A) State Faraday's law of electromagnetic induction and derive an expression :

$$\nabla \times \vec{E} = -\frac{\partial B}{\partial t}$$
.

- (B) What is characteristic impedance of electromagnetic wave?
- (C) What is poynting vector? Explain its physical significance.

UWO-45309(Re)

3

(Contd.)

2

OR

5. (P) Derive Maxwell's relation:

$$\oint_{S} \overrightarrow{D} \, \overrightarrow{ds} = \int_{V} \rho \, dV.$$

- (Q) State Maxwell's equation for free space. 2
- (R) Prove that velocity of plane electromagnetic wave in free space is :

$$\frac{1}{\sqrt{\mu_0 \in_0}}.$$

EITHER

- (A) Explain the working of forward biased PN-Junction diode.
 - (B) What is Hall effect? State its importance. Derive an expression for Hall coefficient.
 - (C) Distinguish between p-type and n-type semiconductor.

OR

- 7. (P) Explain the depletion region in semiconductor. 3
 - (Q) Explain how to obtain forward bias characteristics of PN-junction diode.
 - (R) Give the construction and working of LED.

UWO-45309(Re) 4 (Contd.)

EITHER

 (A) Explain the construction and working of n-channel of J-FET.

- (B) Draw a block diagram of operational amplifier and explain the working of each block. 5
- (C) A given transistor has current gain $\beta = 60$. If transistor is connected in CB configuration, what is the value of α ?

OR

- 9. (P) Explain working of NPN transistor. 4
 - (Q) Draw circuit diagram to study the characteristics of JFET.2
 - (R) Explain how OP-AMP can be used as an inverting amplifier.
 - (S) Why FETS are less noisy?

EITHER

10. (A) Derive Lorentz transformation.

(B) Deduce an expression for relativity of time (time-dilation).

UWO-45309(Re)

5

(Contd.)

2