## B.Sc. Part-II Semester-III Examination PHYSICS

| Tim         | e : Tł | nree l | Hour           | s]                                                 |                    | [Maximum Marks: 80                                |               |      |
|-------------|--------|--------|----------------|----------------------------------------------------|--------------------|---------------------------------------------------|---------------|------|
| Note :— (1) |        |        | AL             | L questions are compulsory.                        |                    |                                                   |               |      |
|             |        | (2)    | Dra            | w neat diagrams wherever ne                        | ecessary.          |                                                   |               |      |
| 1.          | (a)    | Fill   | in the blanks: |                                                    |                    |                                                   |               | 2    |
|             |        | (i)    | The            | covalent bonds in semicond                         | luctor are formed  | due to                                            | of electrons. |      |
|             |        | (ii)   | For            | transistor the value of $\alpha$ is _              |                    | _ than the va                                     | alue of β.    |      |
|             |        | (iii)  | Wh             | en vector field spreads out fro<br>vector field is | om the point of c  |                                                   |               | ence |
|             |        | (iv)   | Inne           | ermost structural shell of eart                    | h is               | ·                                                 |               |      |
|             | (b)    | Cho    | ose t          | he correct alternatives:                           | -                  |                                                   |               | 2    |
|             |        | (i)    | The            | emitter region of transistor i                     | s heavily doped    | because it                                        |               |      |
|             |        |        | (a)            | has to supply majority char                        | ge carriers        |                                                   |               |      |
|             |        |        | (b)            | has to supply minority char                        | ge carriers        |                                                   |               |      |
|             |        |        | (c)            | is the first region of the tran                    | sistor             |                                                   |               |      |
|             |        |        | (d)            | must possess high resistance                       | e.                 |                                                   |               | -    |
|             |        | (ii)   | The            | direction of propagation of o                      | electromagnetic v  | wave is given                                     | by:           |      |
|             |        |        | (a)            | H                                                  | (b)                | Ē                                                 |               |      |
|             |        |        | (c)            | $\bar{\mathbf{E}} \times \bar{\mathbf{H}}$         | (d)                | $\overline{\mathrm{E}}$ . $\overline{\mathrm{H}}$ |               |      |
|             |        | (iii)  | Div            | rergence of a vector quantity                      | is                 |                                                   |               |      |
|             |        |        | (a)            | Scalar                                             | (b)                | Vector                                            |               |      |
|             |        |        | (c)            | Unity                                              | (d)                | Zero                                              |               |      |
|             |        | (iv)   | The            | colour of light emitted by L                       | ED depends on      |                                                   | _:            |      |
|             |        |        | (a)            | Voltage applied                                    |                    |                                                   |               |      |
|             |        |        | (b)            | Current flowing through it                         |                    |                                                   |               |      |
|             |        |        | (c)            | The type of semiconducting                         | materials used     |                                                   |               |      |
|             |        |        | (d)            | All above                                          |                    |                                                   |               |      |
|             | (c)    | Ans    | wer i          | in one sentence:                                   |                    |                                                   |               | 4    |
|             |        | (i)    | Def            | fine current gain α of transist                    | or .               |                                                   |               |      |
|             |        | (ii)   | Wh             | at is non-inertial frame of ref                    | erence?            |                                                   |               |      |
|             |        | (iii)  | Wh             | at is physical significance of                     | poynting vector?   | ,                                                 |               |      |
|             |        | (iv)   | Wh             | nat is 'Hall coefficient'?                         | -                  |                                                   |               |      |
| 2.          | EIT    | HEF    | ₹              |                                                    |                    |                                                   |               |      |
|             | (a)    | Stat   | te and         | d prove Stoke's theorem.                           |                    |                                                   |               | 5    |
|             | (b)    | Def    | ine th         | ne curl of a vector field and ex                   | plain its physica  | l significance                                    |               | 4    |
|             | (c)    | Stat   | e and          | l explain Biot-Savart law. Exp                     | press it in mather | natical form.                                     |               | 3    |

|     | OK  |                                                                                                       |      |  |
|-----|-----|-------------------------------------------------------------------------------------------------------|------|--|
| 3.  | (p) | State and prove Guass's divergence theorem.                                                           | 5    |  |
|     | (q) | Define electric flux.                                                                                 | 2    |  |
|     | (r) | State and prove Ampere's circuital law. Write the vector form of Ampere's circuital law.              | 5    |  |
| 4.  | EIT | HER                                                                                                   |      |  |
|     | (a) | State and prove Poynting Theorem.                                                                     | 6    |  |
|     | (b) | ) State and explain Faraday's and Lenz's law of electromagnetic induction.                            |      |  |
|     | OR  |                                                                                                       |      |  |
| 5.  | (p) | Explain the concept of Displacement current.                                                          | 2    |  |
|     | (q) | Explain physical significance of Maxwell's equations.                                                 | 4    |  |
|     | (r) | Derive Maxwell's equation $\nabla \times H = J + \frac{dD}{dt}$ . State its equivalent integral form. | 6    |  |
| 6.  | EIT | HER                                                                                                   |      |  |
|     | (a) | Explain Varactor diode with its working.                                                              | 4    |  |
|     | (b) | What is depletion layer? What happens to the depletion layer under forward bias and revo              | erse |  |
|     |     | bias ?                                                                                                | 4    |  |
|     | (c) | What is p-n junction? Explain the working of p-n junction under:                                      | 4    |  |
|     |     | (i) Forward bias (ii) Reverse bias.                                                                   |      |  |
|     | OR  |                                                                                                       |      |  |
| 7.  | (p) | Explain:                                                                                              | 4    |  |
|     |     | (a) Breakdown voltage (b) Knee voltage.                                                               |      |  |
|     | (q) | State and Explain I-V characteristics of p-n junction diode.                                          | 4    |  |
|     | (r) | What is Hall Effect? State its applications.                                                          | 4    |  |
| 8.  | EIT | HER                                                                                                   |      |  |
|     | (a) | Explain the construction and working of n-p-n transistors.                                            | 6    |  |
|     | (b) | Explain input and output characteristics of a transistor in CE configuration.                         | 6    |  |
|     | OR  |                                                                                                       |      |  |
| 9.  | (p) | Explain the use of OP-Amp as an integrator and obtain an expression for its output.                   | 5    |  |
|     | (q) | Define the parameters of JFET and obtain the relation between them.                                   | 5    |  |
|     | (r) | Define $\alpha$ and $\beta$ for transistor.                                                           | 2    |  |
| 10. | EIT | HER                                                                                                   |      |  |
|     | (a) | Obtain an expression for variation of mass with velocity of a body.                                   | 5    |  |
|     | (b) | Derive an expression for time dilation.                                                               | 5    |  |
|     | (c) | State the postulates of special theory of relativity.                                                 | 2    |  |

## OR

| 11. | <b>(p)</b> | Obtain an expression for relativistic addition of velocities.                                         | 4   |  |  |
|-----|------------|-------------------------------------------------------------------------------------------------------|-----|--|--|
|     | (q)        | Derive mass-energy relation.                                                                          | 6   |  |  |
|     | (r)        | A rod 10m long is moving with a velocity of 0.9 times the velocity of light. How much will its length | ţth |  |  |
|     |            | appear to an observer on earth?                                                                       | 2   |  |  |
| 12. | EITHER     |                                                                                                       |     |  |  |
|     | (a)        | Explain the vertical division of atmosphere.                                                          | 5   |  |  |
|     | (b)        | Explain the types of earthquakes.                                                                     | 4   |  |  |
|     | (c)        | Give the different intensity scales, of earthquake.                                                   | 3   |  |  |
|     | OR         |                                                                                                       |     |  |  |
| 13. | (p)        | Explain the constituents and properties of Crust, Mantle and Core of the earth with suitable          |     |  |  |
|     |            | diagram.                                                                                              | 6   |  |  |
|     | (a)        | Discuss the scattering absorption and reflection of solar radiation by the atmosphere                 | 6   |  |  |

http://www.sgbauonline.com/