B.Sc. (Part—II) Semester—IV Examination

CHEMISTRY

Time : Three Hours						[Maximum Marks: 80			
N	N.B.	;—	- (1)	Question No. 1 is compulso:	ry.				
				Solve ONE question from ea	-				
				Draw diagrams and give equ		ever necessary.			
				Use of calculator is allowed.		•			
1. (A)	Fill		e blanks :					
¥, (,	_	(i)	The energy required to remove loosely bound electron from neutral gaseous atom to form cation is called						
		(ii)	Glucose on acetylation with acetic anhydride and sodium acetate gives glucose penta acetate. This indicates the presence of in it.						
		(iii)	In b	cc, corner particle contribute	s to	the unit cell.			
		(iv)	The	CH ₂ group when attached t	o two strong	ly electron withdrawing groups is called 2			
()	B)	Choose the correct option from the given alternative :							
		(i)	Out	er electronic configuration for	copper is:				
			(a)	[Ar] $3d^{10}$, $4s^2$	(b)	[Ar] 3d ¹⁰ , 4s ¹			
			(c)	[Ar] $3d^8$, $4s^2$	(d)	[Ar] $3d^5$, $4s^2$			
		(ii)		lal depression constant of can					
			(a)	$K_f = 37.7 \text{ K kg. mol}^{-1}$	(b)	$K_{\rm r} = 14.40 \text{ K kg. mol}^{-1}$			
			(c)	$K_{\rm f} \sim 6.90 \; {\rm K \; kg. \; mol^{-1}}$	(d)	$K_{\rm f} = 20.00 \text{ K kg. mol}^{-1}$			
		(iii)		polynuclear hydrocarbons in called as:	which two o	r more benzene rings are fused together			
			(a)	Condensed system	(b)	Isolated system			
			(c)	Isomerie system	(d)	None of the above			
		(iv)	Stro	ecker synthesis is used for the	synthesis of	f:			
			(a)	Nitrobenzene	(b)	Diazonium salt			
			(c)	α-amino acid	(d)	Carbohydrate 2			
VOX—35800				l	(Contd.)				

www.sgbauonline.com

	(C)	Answer in one sentence each:	
		(i) Why Inner transition elements are called 'f' block elements?	
		(ii) What is calcination?	
		(iii) What are monosaccharides?	4
		(iv) Define catalyst.	-+
_		UNIT—I	
2.	(A)		
		(i) Transition elements show variable oxidation states.	4
		(ii) Chromium and Copper have abnormal electronic configuration.	4
	(B)	Giving electronic configuration, explain why Sc ³⁺ and Zn ²⁺ are colourless while Fe ²⁺ ions are coloured.	and Co ²
	(C)	What are transition elements? Discuss their general characteristics. Why Zn is not coas a true transition element?	nsidered 4
		OR	
3.	(P)	Give electronic configurations of:	
		(i) Zirconium (At. No. – 40)	
		(ii) Cadmium (At. No. = 48)	4
	(O)	Why second ionization energy of chromium is higher as compared to other tr	ansition
		elements?	4
	(R)	Calculate the magnetic moment of Fe ²⁺ ion and Cu ²⁺ ion.	4
		UNIT—II	
4.	(A)	What is concentration of ore? Explain gravity separation method for the concentration	ration of
		ore.	4
	(B)	Give the electronic configuration of Lanthanide Series Elements.	4
		Explain Smelting.	4
		OR	
5.	(P)	Discuss the differences between Lanthanides and Actinides.	4
		Explain Magnetic Separation Method for separation of ores.	4
		Discuss isolation of lanthanides by ion exchange method.	4
	. ,	UNIT—III	
6.	(A)	Explain molecular orbital structure of Naphthalene.	4
	(B)		
	, ,	(i) α-Naphthol to α-Naphthylamine	
		(ii) Naphthalene to 1-Naphthalene sulphonic acid?	4
	(C)	What are epimers? Explain the formation of D-Mannose from D-Glucose.	4
	` /	OR	,

2

(Contd.)

VOX 35800

www.sgbauonline.com

- 7. (P) Describe the important stages in the preparation of Malonic ester from acetic acid. 4
 - (Q) How will you bring about following conversions:
 - (i) Naphthalene into 2-Ethylnaphthalene 2
 - (ii) Naphthalene into 1-Acetylnaphthalene?
 - (R) How Fructose is converted into Glucose?

UNIT-IV

- 8. (A) What happens when aniline is treated with:
 - (i) Aqueous Br₂
 - (ii) Br, is carbon disulphide?
 - (B) How benzene diazonium chloride is prepared in laboratory?
 - (C) Complete the following reactions:

(i)
$$\frac{NO_2}{2H} \Rightarrow ?$$

(ii)
$$\frac{\text{NO}_2}{\text{Electrolytic Reduction}}$$
? $\frac{\text{Rearrangement}}{\text{Rearrangement}}$?

OR

- 9. (P) Discuss Synthesis of Glycine by Gabriel Phthalamide synthesis. 4
 - (Q) Complete the following reaction and predict the product:

(i)
$$N = N$$
 C1 $+ \frac{HOH}{\Delta}$

(ii)
$$\begin{array}{c} N = N - Cl \\ -\frac{CuCl}{\Lambda} \rightarrow ? \end{array}$$

(R) What is nitrating mixture? How benzene is nitrated with nitrating mixture?

VOX--35800 3 (Contd.)

UNIT—V

10.	(A)	State and explain Vant Hoff factor.	4		
	(B)	On the basis of thermodynamic consideration derive an expression for molal elevation consta	nt. 4		
	(C)	Melting point of camphor is 449.5 K. The melting point of a solution containing 5.22×10^{-4} kg camphor and 3.86×10^{-5} kg of an unknown substance is 431.5 K. Find t molar mass of the unknown substance. (Kf of camphor = 37.7 K kg. mol ⁻¹).			
		OR			
11.	(P)	What are colligative properties? Give importance of colligative properties.	4		
	(Q)	How degree of dissociation for an electrolyte $A_x B_y$ type is determined by using Vant Hofactor?	off 4		
	(R)	Calculate the molal depression constant of water. The heat of fusion of ice at 273 K 6024.6 J.mol ⁻¹ . (R = 8.314 J K ⁻¹ , M = 18×10^{-9} kg mol ⁻¹)	is 4		
		UNIT—VI			
12.	(A)	Explain the structure of KCl on the basis of X-ray diffraction.	4		
	(B)	Define:			
		(i) Point of symmetry			
		(ii) Lattice point.	4		
	(C)	Find out Miller indices if the Weiss indices are as follows:			
		(i) 1:1:2			
		(ii) $2:\infty:3$.	4		
		OR			
13.	(P)	Differentiate between Crystalline solids and Amorphous solids.	4		
	(Q)	Calculate the glancing angle for first order reflection from 100 planes of fcc x-rays wavelength of 0.154 nm are used. Given spacing of 100 planes is 0.315 nm.			
	(R)	Define:			
		(i) Body centred crystal			
		(ii) Axis of symmetry.	4		

VOX-35800