B.Sc. (Part—II) Semester-IV Examination

MATHEMATICS

(Classical Mechanics)

Paper—VIII

Time:	Three	Hours]		[Maximum Marks: 60
Note :-		estion No. 1 is compulsory and attemnous each unit.	pt it o	once only and solve ONE question
1. Cho	ose 1	the correct alternative (1 mark each)	:	10
(i)	For	For an inverse square law, the virial theorem reduces to		
	(a)	$2\overline{T} = -n\overline{V}$	(b)	$2\overline{T} = n\overline{V}$
	(c)	$2\overline{T} = \overline{V}$	(d)	$2\overline{T} = -\overline{V}$
(ii)	(ii) The shortest distance between two points in space is			
	(a)	A straight line	(b)	An ellipse
	(c)	A parabola	(d)	A circle
(iii)	(iii) A bead sliding along the wire. The constraint is			
	(a)	Holonomic	(b)	Non-holonomic
	(c)	Superfluous	(d)	None of these
(iv)	(iv) The square of the periodic time of the planet is proportional to the of the			
	axis	of its orbit.		
	(a)	Square	(b)	Cube
	(c)	Not both (a) and (b)	(d)	None of these
(v) A variable quantity whose value is determined by one or more than one for				d by one or more than one function is
	calle	ed		
	(a)	An extremum	(b)	A point of inflection
,	(c)	A functional	(d)	None of these
(vi)	(vi) The founder of the calculus of variations is			
	(a)	Lagrange	(b)	Leibnitz
	(c)	J. Bernoulli	(d)	Euler
(vii) If q	is cyclic, then $\frac{\partial H}{\partial q_i} = \underline{\hspace{1cm}}$.		
	(a)	1	(b)	-1
	(c)	0	(d)	None of these
WPZ—33	54	1		(Contd.)

(c)
$$\Delta \int \sqrt{m(H-V)} ds = 0$$

(a) $\Delta \int \sqrt{2m(H-V)} ds = 0$

- (d) None of these
- (ix) A finite rotation can not be represented by _____.
 - (a) Double vector

(b) Triple vector

(c) A single vector

- (d) None of these
- (x) Infinitesimal rotation holds
 - (a) Commutativity

(b) Not Commutativity

(c) Distributivity

(d) None of these

UNIT-I

- (a) Prove virtual work on a mechanical system (for which the net virtual work of the 2. forces of constraint vanishes) by the applied forces and the reversed effective forces 5 is zero.
 - (b) Derive the Lagrange's equation of motion in the form $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_1} \right) \frac{\partial L}{\partial q_2} = Q_i'$ for a system 5

which is partly conservative.

5

5

- (p) Discuss the motion of a particle in a plane by using polar coordinates. 3.
 - (q) If L is a Lagrangian for a system of 'n' degree of freedom satisfying Lagrange's equations, show by direct substitution that $L' = L + \frac{dF}{dt}$, $F = F(q_1,q_n t)$ also satisfies

Lagrange's equations where F is any arbitrary but differentiable function of its argument.

UNIT--II

(a) Prove for a central force field F, the path of a particle of mass m is given by

$$\frac{d^2u}{d\theta^2} + u = -\frac{m}{h^2u^2} F\left(\frac{1}{u}\right), u = \frac{1}{r}.$$

- (b) Prove that for a particle moving under a central force such that $V = kr^{n+1}$, the virial theorem reduces to $2\overline{T} = (n+1)\overline{V}$. 5
- (p) Prove the following relations: 5.

$$(i) \quad t = \int\limits_{r_0}^{r} \frac{dr}{f}$$

(ii)
$$\phi = \phi_0 + \left(\frac{h}{m}\right) \int_0^t \frac{dt}{r^2}$$
. 3+3

(q) Prove that in a central force field, the areal velocity is conserved. 4 WPZ--3354 (Contd.)

UNIT-III

6. (a) Find the extremals of the functional:

$$I[y(x)] = \int_{0}^{\log 2} (e^{-x}y'^2 - e^xy^2) dx.$$

- (b) Find the shortest curve joining the points (x_1, y_1) and (x_2, y_2) in a plane. 5
- 7. (p) Define the nth order distance. Find the second order distance between the curves $y = -\cos x$ and $y_1 = x$ on $[0, \pi/3]$.
 - (q) Prove that the functional $I[y(x)] = \int_{x_1}^{x_2} F(x, y, y') dx$ where the end points are fixed, is

extremum if y satisfies the differential equation $F_y - \frac{d}{dx}Fy' = 0$.

UNIT-IV

- 8. (a) Obtain Hamilton Equations. Prove that if a generalised co-ordinate does not appear in H, then the corresponding conjugate momentum is conserved.
 - (b) Derive Lagrange's equations for nonholonomic conservative system.
- 9. (p) Derive the Hamilton's equations from variational principle. 5
 - (q) Construct the Routhian in spherical polar coordinates for a particle moving in space under the action of a conservative force field.

UNIT-V

- 10. (a) Prove that the change in the components of a vector under the infinitesimal transformation of the coordinate system is given by $d\vec{r} = \vec{r} \times d\vec{u}$.
 - (b) If A is any 2×2 orthogonal matrix with determinant |A| = 1, then prove that A is a rotation matrix.
- (p) Define infinitesimal rotation. Prove that Infinitesimal rotation matrix ∈ is antisymmetric.
 - (q). Show that the angle of rotation ϕ is given in terms of Eulerian angles by :

$$\cos\frac{\phi}{2} = \cos\frac{\theta}{2} \cdot \cos\frac{1}{2} (\phi + \psi).$$

3

