B.Sc. (Part—II) Semester—IV Examination MATHEMATICS (New)

(Classical Mechanics)

				Paper-V	III		
Tim	e : T1	hree	Hours]		[Maximum	Marks: 60	
	Not	e :	Question No. 1 is compulsor each unit.	ry and atter	npt it once only and solve ONE qu	estion from	
1.	Cho	ose 1	the correct alternative: (1 ma	irk each) :-	ordina.	10	
	(i)	Each planet describes h			aving the sun in one of its foci.		
		(a)	An ellipse	(b)	A circle		
		(c)	A hyperbola	(d)	None of these		
	(ii)	In a	central force field, the areal	velocity is	•	•	
		(a)	Not constant	(b)	Not conserved		
		(c)	Conserved	(d)	None of these		
	(iii)	The	maximum point and the mini	imum poin	t of a function f(x) are called the _		
		(a)	Extremum	(b)	Functional		
		(c)	Continuity of a functional	(d)	None of these		
	(iv)		vo curves are closed in the ser order proximit		rder proximity, then they are close	in the sense	
	-	(a)	Larger	(b)	Smaller		
		(c)	Equal	(d)	None of these		
	(v)	Han	nilton's Equation is q _i =				
		(a)	$\frac{\partial H}{\partial P_i}$	(b)	$\frac{\partial H}{\partial q_i}$		
		(c)	$\frac{\partial H}{\partial t}$	(d)	None of these		
V1M14194				1		(Contd.)	

(vi)	If a generalised co-ordinate does not appear in H ₁ then the corresponding conjugate momentum						
	(a)	Conserved	(b)	Not conserved			
	(c)	Not constant	(d)	None of these			
(vii)	The	shortest distance bet	ween two points i	in a plane is			
	(a)	A straight line	(b)	An ellipse			
	(c)	A parabola	(d)	A circle			
(viii)		•	ed coordinates	and the constraints are holonomic, ther			
	(a)	Zero	(b)	Equivalent			
	(c)	Dependent	(d)	Independent			
(ix)	The	the of the rotation.					
	(a)	Degree	(b)	Order			
	(c)	Degree and order	(d)	None of these			
(x)	The general displacement of a rigid body with point fixed is a rotation about some axis.						
	(a)	One	(b)	Two			
	(c)	Three	(d)	None of these			
			UNIT-	-I			
(a)	Show that the shortest distance between two points in a plane is a stright line.						
(b)				ng of a simple pendulum of mass m ₂ , with mass on a horizontal line lying in the plane in which			
	~			5			
(p)	Two particles of masses m_1 and m_2 are connected by a light inextensible string which passes over a small smooth fixed pulley. If $m_1 > m_2$, then show that the common accleration of						
			*	5			
(q)			5				
	(vii) (viii) (ix) (x) (a) (b)	is	is	is			

UNIT-II

- 4. (a) Derive the differential equation for the orbit of a particle in a central force field.
 - (b) Prove that the square of the periodic time of the planet is proportional to the cube of the major axis of its orbit.
- 5. (p) Prove that in a central force field, the areal velocity is conserved. 5
 - (q) A particle moves on a curve $r^n = a^n \cos n \theta$ under the influence of a central force field. Find the law of force.

UNIT-HI

6. (a) Show that the functional:

$$I[y(x)] = \int_{0}^{1} x^{3} \sqrt{1 + y^{2}(x)} dx$$

defined on the set of functions $y(x) \in c[0, 1]$ is continuous on the function $y_0(x) = x^2$ in the sense of zeroth order proximity.

(b) Find the extremal of the functional

$$I[y(x)] = \int_{-1}^{0} (480y - y'''^2) dx$$

$$y(0) = 0, y(-1) = \frac{1}{3}, y'(0) = 0, y'(-1) = -2, y''(0) = 0, y''(-1) = 8.$$

- 7. (p) Prove that if x does not occur explicitly in F, then F_y , y' F = constant.
- (q) Find the distance between the curves

$$y(x) = xe^{-x}, y_1(x) = 0 \text{ on } [0, 2].$$

UNIT-IV

- (a) State the Hamilton's principle. Prove that Hamilton principle is a necessary and sufficient condition for Lagranges equations.
 - (b) Discuss the Routh's procedure.

9. (p) (i) Prove that $\frac{dH}{dt} = \frac{\partial H}{\partial t} = \frac{-\partial L}{\partial t}$.

(ii) Prove that A cyclic co-ordinate will be absent in Hamiltonian.

5

(q) Give the physical significance of H.

V1M- 14194 3 (Contd.)

UNIT-V

- 10. (a) Define Infinitisimal rotation. Prove that if $A = I + \epsilon$, then the inverse rotation matrix $A^{-1} = I \epsilon$.
 - (b) Prove that the general displacement of a rigid body with one point fixed is a rotation about some axis.
- 11. (p) Define Eulerian Angle.

2

Prove that the change in the components of a vector under the infinitesimal transformation of the coordinate system is given by

 $d\vec{r} = \vec{r} \times d\vec{u}$

(q) Show that the two complex eigen values of an orthogonal matrix representing a proper rotation are e^{±iφ}, where φ is the angle of rotation.