AU-105

B.Sc. Part—II (Semester—IV) Examination MATHEMATICS

Paper-VIII

(Classical Mechanics)										
Time	e : T	hree	[Maximum Marks: 60							
Note: -(1) Question No. 1 is compulso			Question No. 1 is compulsory and att	empt it	once only,					
		(2)	Solve one question from each unit.							
1.	Cho	ose t	he correct alternative :							
	(i)	If th	e equation of constraint varies with ti	it is called as:						
		(a)	Holonomic constraint							
		(b)	Stationary or seleronomous constraint							
		(c)	Moving or Rheonomous constraint							
		(d)	None of these		1					
	(ii)	The	polar equation of a conic section is							
			$\frac{\ell}{r} = 1 + e \cos (\theta - \theta_0)$							
		whe	city.							
		If e	< 1, then conic represents							
		(a)	Hyperbola	(b)	Parabola					
		(c)	Circle	(d)	Ellipse					
	(iii)	If the function $f(x)$ has maximum or minimum value at some point $x = x_0$, the point $x = x_0$ is called as								
		(a)	Stationary point	(b)	Critical point					
		(c)	Extremum point	(d)	None of these 1					
VOX	357	98	1		(Contd.)					

(iv)	The	shortest distance between two points in a	spac	ce is				
		A circle		A straight line				
	(c)	An ellipse	(d)	A parabola	l			
(v)	Fun	ections $y(x)$ for which $\delta I[y(x)] = 0$ are call	led _					
	(a)	Admissible functions	(b)	Absolute functions				
		Stationary functions	- '	None of these	1			
(vi)	H is the Hamiltonian of the system then a generalized coordinate q_i is said to be cyclic							
	if _							
		∂H		∂Н				
	(a)	$\frac{\partial H}{\partial q_i} \neq 0$	(b)	$\frac{\partial H}{\partial q_i} > 0$				
		11		oq _i				
	(0)	$\frac{\partial H}{\partial q_i} = 0$	(4)	$\frac{\partial H}{\partial a} < 0$	1			
	(c)	$\partial ext{q}_i$	(a)	∂q_i	1			
(vii)) If a	. 3×3 matrix A is a rotation matrix, then A	is o	rthogonal and .				
		$ \Lambda = 0$		A ≠ 1				
		A = 1	(d)	None of these	1			
(viii)		number of degrees of freedom for a motion	, ,		ar			
(*111)	1110	mander of degrees of freedom for a mone	JII 01	a partiere along a straight inte	CII.			
	(a)	·	(b)	1				
					1			
	(c)	2	(d)	3	1			
(ix)	If F	I is the Hamiltonian of the system and p	_ = -	$\frac{\partial L}{\partial q_i}$ is the generalized moment	un			
	asso	ociated with generalized coordinate q, ther	the	Hamilton's equations are				
		∂H <u>.</u> ∂Π <u>.</u>		∂Н <u>.</u> ∂Н <u>.</u>				
	(a)	$\frac{\partial \mathbf{H}}{\partial \mathbf{p}_{i}} = \dot{\mathbf{q}}_{i}, \frac{\partial \mathbf{H}}{\partial \mathbf{q}_{i}} = \dot{\mathbf{p}}_{i}$	(b)	$\frac{\partial H}{\partial p_i} = -\dot{q}_i , \frac{\partial H}{\partial q_i} = \dot{p}_i$				
		211 211		211 211				
	(c)	$\frac{\partial H}{\partial \mathbf{p}_{i}} = \dot{\mathbf{q}}_{i} \cdot \frac{\partial H}{\partial \mathbf{q}_{i}} = -\dot{\mathbf{p}}_{i}$	(d)	$\frac{\partial H}{\partial p_i} = -\dot{q}_i, \frac{\partial H}{\partial q_i} = -\dot{p}_i$	1			
		$\mathcal{O}p_{\scriptscriptstyle 1} \qquad \mathcal{O}q_{\scriptscriptstyle 1}$	` ′	op_i , oq_i				
(x)	For	a particle moving under a central force	such	that $V = kr^{n+1}$, the virial theor	en			
	redu	uces to						
	(a)	$\overline{T} = (n+1)\overline{V}$	(b)	$\overline{T} = (n-1)\overline{V}$				
	(c)	$2\overline{T} = (n-1)\overline{V}$	(d)	$2\overline{T} = (n+1)\overline{V}$	1			
	` /	e e ver eve	· - /	- Control	^			
VOX357	798	2		(Con	td.			

UNIT-I

- 2. (a) Derive the Lagrange's equations of motion in the form $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) \frac{\partial L}{\partial \dot{q}_i} = 0$, i = 1, 2,...,n for conservative system from D'Alembert's principle.
 - (b) Construct a Lagrangian for a spherical pendulum and obtain the Lagrange's equations of motion.

OR

- 3. (p) Use D'Alembert's principle to obtain the equations of motion of a simple pendulum.
 - (q) Two particles of masses m_1 and m_2 are connected by a light inextensible string which passes over a small smooth fixed pulley. If $m_1 > m_2$, then show that the common

acceleration of the particles is
$$\frac{(m_1 - m_2)}{(m_1 + m_g)}g$$
.

1 + 4

UNIT-II

- (a) State and prove Virial theorem.
 - (b) Show that if a particle describes a circular orbit under the influence of an attractive central force directed towards point on the circle then the force varies as the inverse fifth power of the distance.

OR

- 5. (p) Prove that in a central force field, the areal velocity is conserved.
 - (q) Prove that if the potential energy is a homogeneous function of degree -1 in the radius vector \(\bar{t}_i\), then the motion of a conservative system takes place in a finite region of space only if the total energy is negative.

UNIT—III

6. (a) Find the extremals of
$$I[y(x)] = \int_a^b [y^2 + y'^2 + 2ye^x]dx$$
.

VOX—35798 3 (Contd.)

(b) Show that the functional:

$$I[y(x)] = \int_{0}^{1} [2y(x) + y'(x)]dx$$

defined in the space $C_1[0, 1]$ is continuous on the function $y_0(x) = x$ in the sense of first order proximity.

OR

- 7. (p) Prove that if x does not occur explicitly in F then, $F_y y' F = constant$.
 - (q) Find the extremals of the functional:

$$I[y(x)] = \int_{0}^{\log_2} (e^{-x}y'^2 - e^xy^2) dx.$$
 5

4

5

UNIT-IV

- (a) Obtain the Hamiltonian and then deduce the equations of motion for a simple pendulum.
 Show that the Hamiltonian of the system is the total energy and also the constant of motion.
 - (b) A particle moves on a smooth surface under gravity. Use Hamilton's principle to show that the equations of motion are:

$$\ddot{\mathbf{x}} = \ddot{\mathbf{y}} = 0, \ \ddot{\mathbf{z}} = -\mathbf{g}$$

where the vertical is taken along the z-axis.

OR

- 9. (p) Define: Hamiltonian H. Derive the Hamilton's equations or the canonical equations of Hamilton.
 - (q) Use Hamilton's principle to find the equations of motion of a particle of mass moving in space in a conservative force field F.

UNIT-V

- 10. (a) Describe the frame rotation and obtain the rotation matrix.
 - (b) If $A_1 = I + \epsilon_1$ and $A_2 = I + \epsilon_2$ be two infinitesimal rotations, then prove that infinitesimal rotations commute.

OR

- 11. (p) Prove that if A is any 2×2 orthogonal matrix with determinant |A| = 1, then A is a rotation matrix.
 - (q) If $A = I + \epsilon$, then prove that the inverse rotation matrix is $A^{-1} = I \epsilon$.

VOX---35798 4 775