B.Sc. (Part-II) Semester-IV Examination MATHEMATICS (NEW)

(Classical Mechanics)

Paper--VIII

	га	per v 111			
Time :	Three Hours]		[Maximum Marks : 60		
Note :-	 Question No. 1 is compulsory and at each unit. 	tempt it or	nce only and solve ONE question from		
1. Ch	oose the correct alternative (1 mark e	ach):	10		
(1)	The virtual work on a mechanical forces is:	system by	the applied forces and reversed effective		
	(a) Zero	(b)	One		
	(c) Negative	(d)	None of these		
(2)	If q_i is cyclic, then $\frac{\partial H}{\partial q_i} =$				
	(a) 0	(b)	1		
	(c) -1	(d)	None of these		
(3)	A particle moving in space has	degree	es of freedom.		
	(a) One	(b)	Two		
	(c) Three	(d)	Four		
(4)	A cyclic co-ordinate will be in Hamiltonian.				
	(a) Present	(b)	Absent		
	(c) Appear	(d)	None of these		
(5)	In a central force field, the angular	momentun	n of a particle remains:		
	(a) Imaginary	(b)	Zero		
	(c) Real	(d)	Constant		
(6)	For a particle moving under a central force such that $V = Kr^{n+1}$, the virial theorem reduces to :				
	(a) $2\overline{T} = -n\overline{V}$	(b)	$2\overline{T} = (n+1)\overline{V}$		
	(c) $2\overline{T} = \overline{V}$	(d)	$2\overline{T} = -(n+1)\overline{V}$		
UNW24753		1	(Contd.)		

www.sgbauonline.com

	(7)	A stationary point of the function f(x	include	es		
		(a) a maximum point	(b)	a minimum point		
		(c) a point of inflection	(d)	all of these		
	(8)	Two curves which are close in the set the sense of order proximity.		order proximity necessarily not be cle	ose in	
		(a) O th	(b)] st		
		(c) 2 nd	(d)	4 th		
	(9)	The general displacement of a rigid be axis.	ody with	point fixed is a rotation about	some	
		(a) One	(b)	Two		
		(c) Three	(d)	None of these		
	(10)) rotation do not commute.				
		(a) Infinite	(b)	Finite		
		(c) Countable	(d)	None of these		
		U	NIT—I			
2.	(a)	Derive the Lagranges equations of motion for conservative system from D'Alemberts principle.				
	(b)	Find the equations of motion for coordinate.	a partic	le moving in space by using Cart	tesian 4	
3.	(p)	Construct a Lagrangian for a spherica of motion.	l pendulu	im and then obtain the Lagrange's equa	ations 5	
	(q)	Show that the shortest distance between	een two	points in a plane is a straight line.	5	
		U	ит—п			
4.	(a)	State and prove the virial theorem of the system.				
		Derive the differential equation for the orbit of a particle in a central force field.			5	
5.	 (p) Show that if a particle describes a circular orbit under the influence of an attraction force directed towards point on the circle then the force varies as the inverse of the distance. 					
	(q)	Derive the equation of a path of a pa	article in	a central force field in the form:		
		$\varphi = \varphi_0 + \left(\frac{h}{m}\right) \int\limits_{r_0}^r \frac{dr}{fr^2} \; . \label{eq:phi}$			5	
UN	W 24	4753	2	(0	Contd.)	

UNIT-III

6. (a) Prove that the functional $I[y(x)] = \int_{x_1}^{x_2} F(x, y, y') dx$ where the end points are fixed, is extremum

if y satisfies the differential equation $F_y - \frac{d}{dx} F_{y'} = 0$.

(b) Define Nth order distance between curve. Find the distance between the curves :

$$y(x) = x e^{-x}, y_1(x) = 0 \text{ on } [0, 2].$$
 1+4

- 7. (p) Show that the functional $I[y(x)] = \int_{0}^{1} \{2y(x) + y'(x)\} dx$ defined in the space $c_1[0, 1]$ is continuous on the function $y_0(x) = x$ in the sense of first order proximity.
 - (q) Find the extremals of the functional $I[y] = \int_{0}^{2\pi} (y'^2 y^2) dx$ that satisfies the boundary conditions

$$y(0) - 1, y(2\pi) = 1.$$
 5

UNIT-IV

- 8. (a) State and prove least action principle.
 - (b) State Hamilton's principle. Prove that :

$$\frac{dH}{dt} = \frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t} \ . \tag{5}$$

- 9. (p) Prove that A cyclic co-ordinate will not occur in the Routhian R. 5
 - (q) Use Hamilton's principle to find the equations of motion of a particle of mass moving in space in a conservative force field F'.

UNIT-V

- 10. (a) State and prove Euler's theorem.
 - (b) Define infinitesimal rotation. Show that infinitesimal rotations commute.
- 11. (p) Prove that:
 - (i) If $A = 1 + \epsilon$, then the inverse rotation matrix $A^{\perp} = 1 \epsilon$.
 - (ii) Infinitesimal rotation matrix ∈ is antisymmetric. 3
 - (q) Prove that a rotation matrix A is orthogonal.

3

5

www.sgbauonline.com