(Contd.)

B.Sc. (Part-II) Semester-IV Examination

MATHEMATICS

(Modern Algebra Groups and Rings)

		Paper—V	11				
Time: 7	hree	Hours]		[Maximum Marks : 60			
Note: (1) Question No. 1 is compulsory and attempt at once only.							
	(2)	Solve ONE question from each unit	*				
1. Cho	ose	the correct alternatives (1 mark each)	:	10			
(i)	(i) A nonempty subset H of the group G is a subgroup of G if and only if $a, b \in H = \mathbb{R}$						
	(a)	$(ab)^{-1} \in H$	(b)	$ab^+ \in H$			
	(c)	$a^{-1}b^{-1} \in \Pi$	(d)	None of these			
(ii)	The	product of two even permutation is	:				
	(a)	Odd	(b)	Even			
	(c)	Both odd and even	(d)	None of these			
(iii)	If C	is a finite group and N is a normal	subg	roup of G, then O(G/N) is equal to:			
	(a)	$O(G) \cdot O(N)$	(b)	O(G) + O(N)			
	(c)	O(G) / O(N)	(d)	O(G) - O(N)			
(iv)	(iv) The subgroup N of G is a normal subgroup of G iff:						
	(a)	$gN \neq Ng$ for some $g \in G$	(b)	$gN = Ng$ for all $g \in G$			
	(c)	$Ng = N$ for some $g \in G$	(d)	$gN - N$ for all $g \in G$			
(v)	Let	(G, +) be a group. Then mapping ϕ :	G -	G is homomorphism if:			
,	(a)	$\phi(a+b)=\phi(a)+\phi(b)$	(b)	$\phi(a \cdot b) = \phi(a) \cdot \phi(b)$			
	(c)	$\phi(a-b) = \phi(a) - \phi(b)$	(d)	$\phi\left(\frac{a}{b}\right) = \phi(a)/\phi(b)$			

VOX-35797

www.sgbauonline.com

	(vi)	If a halo humamarahim of mount?	~ C!	with Varnal V, than G! is		
	(VI)	If ϕ be a homomorphism of group G ont				
		(a) Isomorphic to G/K		Isomorphic to K/G		
	44.	(c) Isomorphic to G	(d)	One-one homomorphism		
	(vii)	A division ring must contain at least :				
		(a) One element	(b)	Two elements		
		(c) Three elements	(d)	None of these		
	(viii)	If in a ring R, $x^2 = x \forall x \in R$; then R is	s :			
		(a) Commutative ring	(b)	Division ring		
		(c) Boolean ring	(d)	Ring with unity		
	(ix)	If U is an ideal of a ring R with unity 1	and	$1 \in U$ then :		
-		(a) $U = R$	(b)	$U \neq R$		
		(c) U = M	(d)	None of these		
	(x)	A ring R has maximal ideals :				
		(a) If R is finite				
		(b) If R is finite with at least 2 element	S			
		(c) Only if R is finite				
		(d) None of these				
		UNIT-	I			
2. (a)	(a)	If G is an abelian group, then prove that	:			
		$(ab)^n = a^n b^n \ \forall \ a, \ b \in G \ and \ \forall \ integers \ n$	١.		5	
	(b)	Prove that intersection of any two subgro	ups	of group is also a subgroup.	3	
	`	If G is a group, then prove that for every $a \in G$, $(a^{-1})^{-1} = a$.				
3.	(p)	If G is a group, then prove that for every $a \in G$, $(a^{-1})^{-1} = a$. 2 If G is a group in which $(ab)^i = a^ib^i$ for three consecutive integers i for all a, $b \in G$,				
51 (P)	N# 2	then prove that G is abelian.				
	(q)	Prove that every permutation is a produc	t of	2-cycles or transpositions.	4	
	(r)	Prove that the identity of a group G is u			2	
VOX	. 357		•		ntd.)	
				(60)	

3.

UNIT-II

- 4. (a) Prove that the subgroup N of G is a normal subgroup of G if and only if each left coset of N in G is a right coset of N in G.
 - (b) Let H be a subgroup of G. If $N(H) = \{g \in G \mid gHg^{-1} = H\}$ then prove that N(H) is a subgroup of G.
 - (c) Show that if G is abelian, then the quotient group G/N is also abelian.
- 5. (p) Let H be a subgroup of a group G. Let for $g \in G$,

$$gHg^{-1} = \{ghg^{-1} / h \in H\}$$

prove that gHg is a subgroup of G.

(q) If G is a group and H is a subgroup of index 2 in G, prove that H is a normal subgroup of G.

4

4

5

(r) If H is a subgroup of G and N is a normal subgroup of G then prove that $H \cap N$ is a normal subgroup of H.

UNIT-III

- 6. (a) If ϕ is a homomorphism of a group G into a group G', then prove that :
 - (i) $\phi(e) = e'$
 - (ii) $\phi(x^{-1}) = (\phi(x))^{-1} \forall x \in G$

where e and e' are the unit elements of G and G' respectively.

- (b) Prove that a homomorphism ϕ of G into G' with Kernel K_{ϕ} is an isomorphism of G into G' if and only if $K_{\phi} = \{e\}$, where e = identity of G.
- (c) Let N be a normal subgroup of G. Define the mapping $\phi : G \to G/N$ such that $\phi(x) = Nx, \forall x \in G$. Then prove that ϕ is a homomorphism of G onto G/N.
- 7. (p) If ϕ be a homomorphism of G onto G' with Kernel K. Then prove that $G/K \approx G'$.

(q) Let ϕ be a homomorphism of G onto G' with Kernel K. Let N' be a normal subgroup of G' and N = $\{x \in G \mid \phi(x) \in N'\}$. Then prove that $\frac{G}{N!} \approx \frac{G'}{N!}$.

VOX—35797 3 (Contd.)

www.sgbauonline.com

UNIT--IV

8.	(a)	Prove that the set of units in a commutative ring with unity is a multiplicative abelia group.	an 4
	(b)	Let K be a nonempty subset of a field F. Then prove that K is a subfield of F if ar	ıd
		only if $x - y$, $xy^{\top} \in K \forall x, y \in K$, $y \neq 0$.	4
	(c)	Define:	
		(i) Prime field	
		(ii) Ring with no zero divisor.	1
9.	(p)	Let R be a ring with a unit element 1, in which $(ab)^2 = a^2b^2 + a$, $b \in R$. Prove that must be commutative.	R 5
	(q)	If R is a ring in which $x^2 = x + x \in R$, then prove that R is a commutative ring characteristic 2.	
		UNITV	
10.	(a)	If U is an ideal of the ring R, then prove that R/U is a ring.	4
	(b)	Prove that a homomorphism f of a ring R to a ring R' is an isomorphism if $Ker f = \{0\}$.	iff 4
	(c)	Define:	
		(i) Trivial Ideals	
		(ii) Simple Ring.	1
11.	(p)	If F is a field, then prove that its only ideals are {0} and F itself.	3
	(q)		es 5
	(r)	If U is a left ideal of a ring R, then prove that U is a subring of R.	2