B.Sc. (Part—II) Semester—IV Examination MATHEMATICS (NEW)

(Modern Algebra: Groups and Rings)

Paper—VII							
Tin	ne : T	Three Hours]	[Maximum Marks: 60				
	Not	te:—(1) Question No. 1 is compulsory and atte (2) Solve ONE question from each unit.	mpt it once only.				
1. Choose the correct alternative (1 mark each):							
	(i)	The identity permutation is:					
		(a) Even (b)	Odd				
		(c) Even and odd (d)	None of these				
	(ii)	If N is a normal subgroup of a finite group G, th	en O(G/N) is equal to:				
		(a) $O(G) \cdot O(N)$ (b)	$O(N) \mid O(G)$				
		(c) $O(G) \mid O(N)$ (d)	None of these				
	(iii)	The product of disjoint cycles is:					
		(a) Cyclic (b)	Not commutative				
			None of these				
	(iv)	Let G be a group and let $a \in G_i$ if $O(a) = 3$ the	en O(a ⁻¹) is equal to:				
		(a) 0 (b)					
		(c) 2 (d)	3				
	(v)	1 2 1					
		•	an isomorphism				
		(c) an endomorphism (d)	None of these				
	(vi)	In ring R, $x^2 = x \forall x \in R$ then R is:					
		(a) Division ring (b)	Boolean ring				
		(c) Ring with unity (d)	Commutative ring				

UNW---24751

(Contd.)

www.sgbauonline.com

	(vii)	The ring M of 2 × 2 matrices is:								
		(a) an integral domain	(b)	not an integral domain						
		(c) commutative ring	(d)	None of these						
	(viit)	An integral domain is :								
		(a) always a field	(b)	never a field						
		(c) a field when it is finite	(d)	None of these						
	(ix)	A ring which has only trivial ideal is called								
		(a) a subring	(b)	a proper ring						
		(c) a simple ring	(d)	None of these						
	$\langle \lambda_f$	The intersection of two right ideals of a ring R is:								
		(a) a left ideal of R	(b)	a right ideal of R						
		(c) both lest and eight ideal of R	(d)	None of these	10					
		UNIT -I								
	(3)	. Frave this a group G is abelian iff $(ab)^2 = a^2b^2$, \forall $a,b \in G$.								
	÷* ;	$r_1 = r_2 + (1/2) + (3/5)$ and r_1 y be permutations on s given by :								
		$y = \begin{pmatrix} 1 & 0 & 0 & 4 & 5 \\ 3 & 1 & 5 & 4 & 2 \end{pmatrix}, g = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 2 \end{pmatrix}$	4 3	5						
		then prove that the product of permutations	s is no	t commutative.	4					
	(c)	Prove that any cyclic group is abelian.			3					
3.	(p)	Show that, a non-empty subset H of a gro	up G	is a subgroup of G iff:						
		(i) $a, b \in H \Rightarrow ab \in H$,								
		$\langle ii \rangle \ a \in H \Rightarrow a^{-1} \in H.$			4					
	(q)	If H_1 and H_2 are the subgroups of group G t	hen p	rove that $H_1 \cap H_2$ is also a subgroup of $H_1 \cap H_2$ is also a subgroup.	oup of G 3					
	(r)	Prove that the product of an even permuta	tion a	nd an odd permutation is odd.	يا					
- CH 194	V 247	751 2			(Contd.)					

www.sgbauonline.com

UNIT-II

- 4. (a) Show that if G is abelian, then the quotient group G/N is also abelian. Is its converse true? Explain.
 - (b) If H is a subgroup of G and N is a normal subgroup of G, then show that $H \cap N$ is a Normal subgroup of H.
- 5. (p) If G is a finite group and H is a subgroup of G then prove that O(H) is a divisor of O(G).
 - (q) Let H be a subgroup of G. If $N(H) = \{g \in G : gHg^{\perp} = H\}$. Show that N(H) is a subgroup of G.
 - (r) Prove that N is a normal subgroup of G if and only if $gNg^{-1} = N \ \forall \ g \in G$.

UNIT-HI

- 6. (a) Show that any infinite cyclic group is isomorphic to the additive group of integers. 4
 - (b) Let G be any group and g a fixed element in G. Define $\phi: G \to G$ by $\phi(x) = gxg^{-1}$. Prove that ϕ is an isomorphism of G onto G.
 - (c) Let G be a group of non-zero real numbers under multiplication and φ : G → G such that φ(x) = 2x ∀ x ∈ G then prove that φ is not a homemorphism.
- 7. (p) If M, N are normal subgroups of G, then prove that $\frac{NM}{M} \approx \frac{N}{N \cap M}$.
 - (q) Show that the mapping f: C → R defined by t(x + iy) = x is a homomorphism of the additive group of complex numbers onto the additive group of real numbers and find the Kernel of f.

UNIT-IV

- 8. (a) Prove that a ring R is commutative iff $(a + b)^2 = a^2 + 2ab + b^2$.
 - (b) Show that intersection of two subrings of a ring is a subring.
 - (c) Let the characteristic of the ring R be 2 and let $ab = ba \ \forall \ a, b \in R$. Then show that $(a + b)^2 = a^2 + b^2$.

UNW--24751 3 (Contd.)

www.sgbauonline.com

9. (p)		Prove that every prime field of finite characteristics $p > 0$ is isomorphic to the field z_p	
	(q)	If R is a ring with zero element 0, then for all a, b, $c \in R$. Prove that :	4
		(i) $a \cdot 0 = 0 \cdot a = 0$	
		(ii) $(-a) \cdot (-b) = a \cdot b$	4
	(r)	Prove that a field is an integral domain.	2
		UNIT—V	
10.	(a)	If U and V are ideals of a ring R then prove that U \cap V is the largest ideal that is contain both U and V.	
	(b)	In a principle ideal domain if p is prime and p ab then prove that p a or p b.	5
11.	(p)	If U is an ideal of the ring R, then prove that R/U is a ring.	5
	(q)	If F is a field, then prove that its only ideals are {0} and F itself.	3
	(r)	Define Maximal ideal.	2