AS-1424

B.Sc. Part-II (Semester-IV) Examination MATHEMATICS (New)

(Modern Algebra: Groups and Rings)

					Paper—	V 11				
Tim	e : T	hree	Hou	ırs]			[Maximum Marks:	60		
	Note	e :	- (1)	Question No.	1 is compulsory	and a	ttempt at once only.			
			(2)	Solve one qu	estion from each u	ınit.				
1.	Choose the correct alternatives (1 mark each):									
	f G iff:									
		(a)	gN	≠ Ng for som	e g ∈ G	(b)	$gN = Ng$ for all $g \in G$			
		(c)	Ng	= N for some	$g \in G$	(d)	$gN = N$ for all $g \in G$			
	(ii) If H is a subgroup of a group G such that $H \neq \{e\}$ and $H \neq G$ then H is									
		(a)	A tr	rivial subgroup	•	(b)	Proper subgroup			
		(c)	Imp	roper subgrou	p	(d)	None of these			
	(iii)	The	proc	duct of two od	d permutations is	:				
		(a)	Odd	l		(b)	Even			
		(c)	Botl	h odd and eve	n	(d)	None of these			
	(iv) The identity element of the quotient group G H is :									
		(a)	G			(b)	Н			
		(c)	G	H		(d)	H G			
	(v) A homorphism of a group into itself is:									
		(a)	A h	omomorphism		(b)	An isomorphism			
		(c)	An	endomorphism	1	(d)	None of these	,		
	(vi) Which of the following is not an integral domain?									
		(a)	(C,	+, •)		(b)	(Q, +, ·)			
		(c)	(R,	+, ·)		(d)	(N, +, ·)			

		(a) Commutative ring	(b)	Division ring				
		(c) Boolean ring	(d)	Ring with unity				
	(viii) A field which contains no proper s	ubfield is	called:				
		(a) Subfield	(b)	Prime field				
		(c) Integral domain	(d)	Division ring				
	(ix)	The characteristic of a finite integral domain is:						
		(a) Even number	(b)	Odd number				
		(c) Prime number	(d)	None of these				
	(x)	A ring which has only trivial ideal						
		(a) A subring	(b)	A proper ring				
		(c) A simple ring	(d)	None of these				
		U	NIT—I					
2.	(a)	Let G be a group then prove that ($(ab)^{-1} = b^{-1}$	$a^{-1} \forall a, b \in G.$	3			
	(b)	Prove that every subgroup of a cyclic group is cyclic.						
	(c)) Define even and odd permutation. Explain whether the following permu						
		or odd $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 5 & 4 & 3 & 6 & 1 & 7 & 9 & 8 \end{pmatrix}$.	•		4			
3.	(p)	Prove that the intersection of any t	wo subgro	ups of a group G is a subgroup	of G.			
	(q)	Prove that every permutation on a finite set is either a cycle or it can be expres a product of disjoint cycles.						
	(r)	Let $G = \{a + b\sqrt{2} \mid a, b \in Q\}$. Show that G is a group w.r. to addition.						
VTN	114	192	2		(Contd.)			

UNIT-II

		01411—11
4.	(a)	Let H be a subgroup of a group G and let a, b, \in G. Then prove that Ha = Hb iff $ab^{-1} \in H$.
	(b)	Show that every subgroup of an abelian group is normal.
	(c)	If $G = \{1, -1, i, -i\}$ and $N = \{1, -1\}$, then show that N is a normal subgroup of the multiplicative group G. Also find the quotient group $G N$.
5.	(p)	If G is a finite group and H is a subgroup of G, then prove that $O(H)$ is a divisor of $O(G)$.
	(q)	Prove that the subgroup N of G is a normal subgroup of G if and only if each left coset of N in G is a right coset of N in G.
	(r)	Show that if G is abelian, then quotient group G N is also abelian.
		UNIT—III
6.	(a)	Prove that any infinite cyclic group is isomorphic to the additive group of integers.
	(b)	If ϕ is an homomorphism of a group G into a group G, then prove that :
		(i) ϕ (e) = e'
		(ii) $\phi(x^{-1}) = (\phi(x))^{-1} \forall x \in G$ where e and e are the unit elements of G and G respectively.
	(c)	Define:
		(i) Endomorphism
		(ii) Isomorphism.
7.	(p)	If ϕ be a homomorphism of G on to G' with Kernel K, then prove that $G \mid K \approx G'$.
	(q)	Let G is a group of nonzero real numbers under multiplication $\phi: G \to G$ such that $\phi(x) = x^2 \ \forall \ x \in G$, then prove that ϕ is homomorphism and also find its Kernel.

3

(Contd.)

VTM-14192

UNIT-IV

- (a) If R is a ring in which x² = x ∀ x∈R, then prove that R is a commutative ring of characteristic 2.
 - (b) Let the integer $n \ge 2$ and $Z_n = \{0, 1, 2, ----, n-1\}$. Show that Z_n is a commutative ring with unity under the addition and multiplication mod n.
- (p) Prove that every prime field of characteristic zero is isomorphic to the field Q of rational numbers.
 - (q) Prove that a finite integral domain is a field.

UNIT---V

- 10. (a) Let R be a ring $a \in R$ and $r(a) = \{x \in R \mid ax = 0\}$. Then prove that r(a) is a right ideal of R.
 - (b) If R is a commutative ring with unity, then prove that every maximal ideal of R is a prime ideal.
 - (c) If U is an ideal of the ring R, then prove that R/U is a ring.
- (p) Let R be a ring. Then prove that the intersection of two left ideals of R is a left ideal of R.
 - (q) Prove that a homomorphism f of a ring R to a ring R is an isomorphism iff Ker f = {0}.
 - (r) Prove that the ring of 2 × 2 matrices of rationals has no ideal other than {0} and the ring itself.

5