B.Sc. (Part-II) Semester-IV Examination

			1.1	LIBICS		
Time : T			-		[Maximum Marks :	80
Note :			L questions are compulsor	•		
	(2)	Dra	w neat and well labelled d	liagrams wl	nerever necessary.	
1. (A)	Fill	in tl	ne blanks :			2
	(i)	For	constructive interference t	he optical p	oath difference is	
	(ii)	Inco	oming solar radiation reach	ing earth s	urface is called	
	(iii)	Pro	pagation of light through	a fibre cor	e depends on the Phenomenon kno	wn
		as _				
	(iv)		pumping is used in R	uby Laser.		
(B)	Cho	ose	the correct alternatives :			2
	(i)	If N	be the number of lines pe	er inch, the	grating element will be:	
		(a)	2.54/N	(b)	N/2.54	
		(c)	N	(d)	1/N	
	(ii)	Hali	f wave plate introduces a p	hase differ	ence between o-rays and E-rays of	:
		(a)	$\pi/2$	(b)	π	
		(c)	2π	(d)	$3\pi/2$	
	(iii)	A la	aser beam consists of:			
		(a)	Light material particles	(b)	Highly coherent photons	
		(c)	Electrons	(d)	Cosmic rays	
	(iv)	lf α	is the acceptance angle, the	hen numeri	cal aperture is :	
		(a)	cos α	(b)	tan a	
		(c)	cosec a	(d)	sin α	
/OX3579	90			1	(Con	td)
				•	(COII	1741

www.sgbauonline.com

	(C)	Answer in one sentence:	4
		(i) What is resolving power of optical instrument?	
		(ii) What is double refraction?	
		(iii) What is hologram?	
		(iv) What is fuel cell?	
	EIT	THER	
2.	(A)	Derive an expression for equivalent focal length of a co-axial lens system.	4
	(B)	What is interference of light? Explain the interference in thin films due to translight.	mitted 6
	(C)	In a Newton's rings experiment, the diameter of 10th dark ring due to wave	elength
		6000 Å in air is 0.5 cm. Find the radius of curvature of the lens.	2
	OR		
3.	(P)	What is wedge shaped thin film? Explain the interference in wedge shape film.	ed thin
	(Q)	What are Newton's rings? Determine the wavelength of monochromatic light by	y using
		Newton's rings.	6
	EIT	HER	
4.	(A)	Distinguish between zone plate and convex lens.	4
	(B)	What is zone plate? Describe its construction and deduce an expression for a	area of
		zone.	6
	(C)	Explain the construction of Fresnel half period zone.	2
	OR		
5.	(P)	Explain the Rayleigh's criteria for resolution.	4
	(Q)	Derive an expression for the resolving power of a plane transmission gra	ting.
			6
	(R)	A grating with 3000 lines per cm is illuminated at normal incidence by light of wave	elength
		6600 Å. How many orders will be visible?	2
vox	351	799 2	(Contd.)

www.sgbauonline.com

EITHER

6.	(A)	Explain the concept of polarization of light.	2
	(B)	Explain polarization by reflection and derive Brewster's law.	6
	(C)	What is Nicol Prism? Describe its construction.	4
	OR		
7.	(P)	What is Phase retardation plate? Derive an expression for thickness of q waveplate.	uarter 6
	(Q)	Explain plane, circularly and elliptically polarised light.	6
	EIT	THER	
8.	(A)	Explain the term population inversion.	2
	(B)	Describe three level laser system.	4
	(C)	Describe construction and working of He-Ne Laser.	6
	OR		
9.	(P)	Explain the terms:	4
		(i) Stimulated emission	
		(ii) Spontaneous emission.	
	(Q)	Explain construction and working of Ruby Laser.	6
	(R)	Give any four applications of LASER.	2
	EIT	THER	
10.	(A)	Explain the term, 'Total Internal Reflection' and derive an expression for cangle.	ritical 6
	(B)	Classify the fibers on the basis of Refractive index and mode.	4
	(C)	Calculate the numerical aperture and acceptance angle of an optical fibre from following data:	m the
		μ_1 (core) = 1.55 and μ_2 (cladding) = 1.50.	2
VOX	.—357	799 3 (C	Contd.)

www.sgbauonline.com

	•	H b	
•	- 12	-	

11.	(P)	Derive an expression for acceptance angle of an optical fibre.	4
	(Q)	What are different types of losses in optical fibre ?	3
	(R)	State any two applications of optical fibre.	2
	(S)	Explain fiber optical communication system.	3
	EIT	HER	
12.	(A)	Explain the concept of Photovoltaic cell.	2
	(B)	Give the construction and working of Photovoltaic cell.	5
	(C)	State the advantages of Photovoltaic cell.	2
	(D)	Plot the graph between voltage and current in case of solar cell with p	proper
		naming.	3
	OR		
13.	(P)	Explain the focussing type solar collectors.	6
	(Q)	Explain the construction and working of a solar cell.	3
	(R)	State the applications of solar cell.	3

775