B.Sc. (Part—III) Semester—V Examination CHEMISTRY

Time : Three Hou			urs]		[Maximum Marks: 80		
Note : (1) Q			estion No. 1 is compulsory.				
	(2)	Solv	ve ONE question from each unit.				
	(3)	Dra	w diagrams and give equations where	ver nec	essary.		
	(4)	Use	of calculator is allowed.				
1. (A)	Fill	in th	ne blanks :				
	(i)	The	ligand contains atleast one atom hav	ing a	of electrons.		
	(ii)	Pyri	role can be synthesized by distilling .		with zinc dust.		
	(iii)		Photochemical reactions are initiated by absorption of light radiations ofregion.				
	(iv)	For	a molecule to be microwave active it	must p	ossess dipole moment.		
(B)	Sele	ect th	ne correct alternative :				
	(i)	Sul	phadiazine is synthesized from :				
		(a)	Acetanilide	(b)	Quinoline		
	,	(c)	Sulphanilamide	(d)	Acetone		
	(ii)	Sub	stitution of an electrophile in pyrrole	mainly	occurs at position number:		
		(a)	1	(b)	2		
		(c)	3	(d)	4		
	(iii)	Trai	nsition elements form complexes read	ily beca	use of:		
		(a)	Same size of cation	(b)	Vacant d-orbital		
		(c)	Large ionic charge	(d)	All		
	(iv)	For	Stoke's lines:				
		(a)	$v_i > v_s$	(b)	$v_i = v_s$		
		(c)	$v_i \leq v_s$	(d)	All 2		
VTM134	107		1		(Contd.)		

	(C)	Answer in one sentence :	
		(i) Write the formula showing relationship between number of unpaired electrons	and
		magnetic movement ?	
		(ii) Write spectrochemical series ?	
,		(iii) What are herbicides ?	
		(iv) Define "electromagnetic spectrum".	4
		UNIT—I	
2.	(a)	Explain the following isomerism with suitable example:	
		(i) Ionisation Isomerism	
		(ii) Linkage Isomerism.	4
	(b)	Calculate EAN of the underlined metal in the following complexes:	
		(i) $[\underline{Fe}(CN)_6]^{4-}$ (At No. of Fe = 26)	
		(ii) $[\underline{Ni}(NH_3)_6]^{2+}$ (At No. of Ni = 28).	4
	(c)	Differentiate between double salt and complex compound.	4
		OR	
3.	(p)	Explain "Fe(CN) ₆ ⁴⁻ is diamagnetic but $[Fe(CN)_6]^{3-}$ is paramagnetic" on the basi VBT.	s of
	(q)	Give the correct formula of following complexes:	
		(i) Hexa ammine Nickel(II) chloride	
		(ii) Penta ammine bromo cobalt(III) sulphate.	4
	(r)	Define the terms giving example:	
		(i) Co-ordination number	
		(ii) Complex ion.	4
		UNIT—II	
4.	(a)	Explain crystal field splitting in tetrahedral complexes.	4
	(b)	Calculate the ground state term symbol for d ¹ system.	4
	(c)	Explain electronic spectra of $[Ti(H_2O)_6]^{3+}$ ion.	4
		OR	
5.	(p)	What are the limitations of Crystal Field Theory (CFT) ?	4
	(q)	Explain Laporate orbital selection rule for d-d transitions.	4
	(r)	Calculate CFSE for $[Cr(H_2O)_6]^{3+}$ for which Δ_0 is 12600 cm ⁻¹ .	4
VTM	I—13	407 2 (Co	ontd.)

UNIT—III

6.	(a)	How will you convert the following?	
		(i) Methyl magnesium bromide to 1-butene	
		(ii) Methyl lithium to acetic acid.	4
	(b)	Discuss the orientation of nucleophilic substitution in pyridine.	4
	(c)	How will you obtain ?	
		(i) Pyrrole from succinimide	
		(ii) Pyridine from acetylene.	4
		OR	
7.	(p)	Compare the basic nature of pyrrole with pyridine.	4
	(q)	Complete the following reactions:	
		(i) $CH_3Li + H - C - H \longrightarrow ?$	
		(ii) $CH_3MgBr + H_2C \xrightarrow{O} CH_2 \longrightarrow ? \xrightarrow{Hydrolysis} CH_3CH_2CH_2OH n-propanol$	4
	(r)	At what positions pyrrole undergoes electrophilic substitution ? Give reasons.	4
		UNIT—IV	
8.	(a)	Give the preparation and uses of alizarin.	4
	(b)	Give the preparation and uses of sulphadiazine.	4
	(c)	Explain the following terms:	
		(i) Rodenticides	
		(ii) Pesticides.	4
		OR	
9.	(p)	Give the preparation and uses of crystal violet.	4
	(q)	What are sulphadrug? How sulphanilamide is prepared?	4
	(r)	(i) What are fungicides? Give examples.	
		(ii) What are herbicides ? Give example.	4
VTN	<i>1</i> —13	407 3 (Cor	ıtd.)

UNIT--V

10.	(a)	Explain the kinetics of photochemical decomposition of HI.
	(b)	Explain primary and secondary processes involved in photochemical reactions.
	(c)	The quantum yield for the reaction of decomposition of HI is 2. Calculate the number of photons absorbed in an experiment in which 0.01 moles of HI are decomposed $(N = 6.023 \times 10^{23})$
	-	OR
11	(p)	State and explain Lambert's law.
	(q)	Explain energy transfer processes in photosensitized reactions.
	(r)	Calculate the energy of a photon and an einstein of radiation of wavelength 4000 $\hbox{\normalfont\AA}$
		Given: $h = 6.62 \times 10^{-34} \text{ J.sec}$
		$c = 3 \times 10^8 \text{ m sec}^{-1}$
		$N = 6.023 \times 10^{23}$
		UNITVI
12.	(a)	Explain:
		(i) Emission spectrum
		(ii) Absorption spectrum.
	(b)	Show that spectral lines in the rotational spectrum of diatomic rigid rotator are equispace (or equidistant).
	(c)	Calculate the wave number in m^{-1} of the radiation of frequency $1.5\times10^{15}~s^{-1}$ and $5\times10^{16}~s^{-1}$.
		$Cc = 3 \times 10^8 \text{ m sec}^{-1}.$
		OR
13.	(p)	Explain pure rotational Raman spectrum of a diatomic molecule.
	(q)	Draw energy level diagram and explain rotational, vibrational and electronic transition in a molecule.
	(r)	Internuclear distance in HF molecule is 0.92 Å and reduced mass of HF i 1.578×10 ⁻²⁷ kg. Calculate moment of inertia of HF molecule.
VTN	1—13	407 4 825
	,	