B.Sc. Part—III Semester—V Examination MATHEMATICS (OLD) (UPTO SUMMER-2018)

(Modern Algebra)

		j	Paper	X.		
Time:	Three	Hours]		[Maximu	m Marks : 60	
	N.I	3.: — Question No. 1 is compu	lsory and	l answer ONE question from each	ch Unit.	
1. Ch	Choose the correct alternatives (1 mark each) :—					
(1)	Ide	mpotent element of group is:			1	
	(a)	Any element of group	(b)	Identity element of group		
	(c)	All elements of group	(d)	None of these		
(2)	The	e identity element in a quotient g	group G/	N is:	1	
	(a)	Identity element in group	(b)	Identity element in N		
	(0)	N	(d)	None of these		
(3)	Δn	element a of group G is of ord	er n then	:	1	
	(a)	$a^n = a \cdot a \cdot a \dots \cdot a $ n times	(b)	$a^n = Identity$		
	(c)	$a^n = -Identity$	(d)	None of these		
(4)	Ar	$ing Z_6$ is:			1	
	(a)	Commutative ring	(b)	not an integral domain		
	(c)	not a field	(d)	all above		
(5)	The	e Kernel of a homomorphism f	$: G \to G$	'is:	. 1	
	(a)	a subset of G	(b)	a subset of G'		
	(c)	{e'}	(d)	None of these		
(6)	A h	omomorphism from a Group G	into itsel	f is called:	1	
	(a)	Automorphism	(b)	Endomorphism		
	(c)	Monomorphism	(d)	Epimorphism		
VOX—35	305		1		(Contd.)	

	(7)	Which of them is not an integral dom	nain ?		1		
		(a) (Q, +, ·)	(b)	$(R, +, \cdot)$			
		(c) (C, +, ·)	(d)	(N, +, ·)			
	(8)	A ring (R, +, ·) is called a Boolean r	ing ∀	$a \in R$:	1		
		(a) $a^2 = e$	(b)	$a^2 = a$			
		(c) $a = a^{-1}$	(d)	a = c			
	(9)	The polynomial $f(x) = x^2 - 3$ is:			1		
		(a) Reducible in the field of rational numbers					
		(b) Reducible in the field of real nur	nbers				
		(c) Irreducible in the field of real nu	ımbers	5			
		(d) None of these					
	(10)	An integral domain is:			1		
		(a) Always a field	(b)	Never a field			
		(c) A field when it is finite	(d)	None of these			
		U	NIT	-I			
2.	(a)	Prove that a subgroup H of a group G is a normal sub-group of G iff the product of tw					
		right cosets of H in G is again a right	it cose	et of H in G.	5		
	(b)	Prove that the intersection of any two	o norm	nal subgroups of a group is a normal subgroup			
	(e)	Show that every subgroup of an abel	ion or		3 2		
3.	(c) (d)			a subgroup H of a group G is normal i			
э.	(u)	$x \coprod x^{\perp} = H, \ \forall x \in G.$	e mai		5		
	(e)	If N is normal subgroup of an abelia abelian.	n grou	up G, then prove that the quotient group G/N	is 3		
	(f)	Define:					
		(i) Right coset	(ii)	Left coset			
		with respect to addition.			2		
VO	X— 353	05	2	(Conto	i.)		

UNIT-II

- 4. (a) If f is homomorphism from a group G into a group G'. Then show that the Kernel of f is a normal subgroup of G.
 - (b) Prove that the group G is abelian iff the mapping f: G →G' defined by f(a) = a², ∨ a ∈G is homomorphism.
 - (c) Define Isomorphism.
- 5. (d) If G is a group and N is normal sub group of G and F: $G \rightarrow G/N$ defined by f(x) Nx, $\forall x \in G$ then prove that F is homomorphism of G onto G/N and ker F = N.
 - (e) G is a group of non-zero real numbers under multiplication, $\phi : G \to G$ is defined by $\phi(x) = x^2$, $\forall x \in G$. Verify ϕ is homomorphism. Find Kernel of ϕ .

UNIT-III

- 6. (a) Define: A ring with zero divisors. Prove that a ring R is without zero divisors iff cancellation laws hold in R.
 - (b) Prove that a nonempty subset S of a ring R is a subring of R iff x-y, $x \cdot y \in S$, $\forall x, y \in S$.
- 7. (c) If R is ring such that $a^2 = a$, $\forall a \in \mathbb{R}$, then prove that :
 - (i) a + a = 0
 - (ii) $a + b = 0 \implies a = b, \forall a, b \in \mathbb{R}$.
 - (d) Let $M = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle/ a, b, c, d \in R \right\}$. Show that M is ring with unity with respect to addition and multiplication of matrices.

UNIT--IV

- 8. (a) Prove that every field is an integral domain.
 - (b) If the characteristic of the ring R is 2 and ab = ba for all a, b \in R, then show that : $(a+b)^2 = a^2 + b^2 = (a-b)^2.$

5

- (c) Define:
 - (i) Subfield
 - (ii) Prime field.

VOX 35305 . 3 (Contd.)

www.sgbauonline.com

9.	(d)	Prove that the characteristic of an integral domain is either zero or prime. 4
	(e)	Show that the set of numbers of the form $a+b\sqrt{2}$, with a and b as rational numbers is a field.
	(f)	Define : Division ring.
		UNITV
10.	(a)	If $f(x)$ and $g(x) \neq 0$ are any two polynomials over a field F, then show that there exist two unique polynomials $t(x)$ and $r(x)$ over F such that :
		$f(x) = t(x) \cdot g(x) + r(x),$
		where $r(x) = 0$ or deg $r(x) \le deg g(x)$.
	(b)	If $f(x)$ is a polynomial over a field F and $\alpha \in F$, then show that $(x - \alpha)$ divides $f(x)$ iff $f(\alpha) = 0$.
	(c)	Define :
		(i) Monic polynomial
		(ii) Associate Polynomials. 2
11.	(d)	Prove that any non-constant polynomial in $F(x)$ can be written in a unique manner as a product of irreducible polynomials in $F[x]$, where F is a field.
	(e)	Prove that the polynomial $f(x) = x^4 + 2x + 2$ is irreducible over the field of rational numbers.
	(1)	Use the remainder theorem to determine the remainder when $f(x) = 3x^5 - 4x^4 - 2x + 1 \in \mathbb{R}[x]$ is divided by $x + 2 \in \mathbb{R}(x)$.

VOX -35305 775