AS-1448

B.Sc. (Part—III) Semester—V Examination MATHEMATICS

Paper—IX

(Analysis)

Time: Three Hours] [Maximum Marks: 60 N.B.:—(1) Question No. 1 is compulsory. (2) Attempt ONE question from each unit. Choose the correct alternatives :--(i) $\int_{1}^{\infty} \frac{dx}{x^3}$ converges to: 1 (a) $\frac{1}{2}$ (b) 1 (c) 2 (d) 3 (ii) If f be a bounded function defined on [a, b] and p be any partition of [a, b] then U(p, -f) is: 1 (b) U(p, f) (a) L(p, f) (c) -L(p, f)-U(p, f)(iii) If f(z) and $f(\overline{z})$ are both analytic, then f(z) is: ì (a) Unbounded (b) Constant (c) Identically zero None of these (d) (iv) A function F(x, y) is harmonic in D if: 1 $(b) \quad F_{xx} - F_{yy} = 0$ (a) $F_{xx} + F_{yy} = 0$ (c) $F_{xy} + F_{yx} = 0$ (d) None of these

Ţ

VTM-13404

(Contd.)

	S is	:		
	(a)	A circle	(b)	A straight line
	(c)	The region $R_{\epsilon}(w) \ge 0$	(d)	The region $R_e(w) \le 0$
(vi)	A Bilinear transformation with only one fixed point is:			
	(a)	Loxodromic	(b)	Elliptic
	(c)	Hyperbolic	(d)	Parabolic
(vii)) If {	A _a } be a finite or infinite collection	of sets \boldsymbol{A}_{α}	then $\left[\bigcup_{\alpha} A_{\alpha}\right]^{c} =$
	(a)	$\bigcap_{lpha} A^c_lpha$		$\bigcup_{\alpha} A_{\alpha}^{c}$
	(c)	$\mathop{\cap}_{\alpha} A_{\alpha}$	(d)	$\bigcup_{\alpha} A_{\alpha}$
(viii)	In t	he real line R, which of the followir	ng is true ?	
	(a)	Every Cauchy sequence is converge	ent	
	(b)	Every sequence is bounded		
	(c)	Every sequence is convergent		
	(d)	None of these		
(ix)	A metric space (X, d) is complete if:			
	(a) Every convergent sequence in X is a Cauchy sequence			
	(b) Every Cauchy sequence in X is convergent in X			
	(c)	Every convergent sequence in X is	not a Cauc	hy sequence
	(d)	None of these		
(x)	If B is closed and K is compact, then $B \cap K$ is :			
	(a)	Bounded	(b)	Closed
	(c)	Convergent	(d)	Compact

UNIT-I

- 2. (a) If f be continuous and integrable on [a, b] then prove that $\int_a^b f(x) dx = f(c)$ (b a), where c is some point in [a, b].
 - (b) If m and M are glb and lub of f(x) in [a, b] then show that $m(b-a) \le L(p, f) \le U(p, f) \le M(b-a).$
 - (c) If f is bounded function defined on [a, b] and p be any partition of [a, b] then prove that:
 - (i) U(p, -f) = -L(p, f)

(ii)
$$L(p, -f) = -U(p, f)$$
.

3. (p) Show that:

(i)
$$\int_{0}^{\infty} e^{-rx} dx$$
 converges if $r > 0$ and diverges if $r \le 0$.

(ii)
$$\int_a^{\infty} \frac{dx}{x^p}$$
 converges if $p > 1$ and diverges if $p \le 1$ and $a > 0$.

(q) Using limit test, show that the integrals:

(i)
$$\int_{0}^{\infty} \frac{x}{1-x^2} dx = \infty \text{ and}$$

(ii)
$$\int_{1}^{\infty} \frac{x \, dx}{3x^4 + 5x^2 + 1}$$
 coverges absolutely.

UNIT-II

- 4. (a) If w = f(z) = u + iv be analytic in D and $z = re^{i\theta}$, where u, v, r, θ are the real numbers then prove that $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$.
 - (b) Separate sin z into real and imaginary parts. Use Cauchy-Riemann conditions to show that : sin z is analytic. Prove that $\frac{d}{dz}(\sin z) = \cos z$.

VTM--13404 3 (Contd.)

5. (p) Find an analytic function f(z) such that

$$R_e\{f'(z)\} = 3x^2 - 4y - 3y^2$$

and f(1 + i) = 0, using Milne-Thomson method.

(q) If f(z) = u + iv be analytic in the region D, where u and v have continuous partial derivatives upto the second order, then prove that u and v both are harmonic functions.

UNIT-III

- 6. (a) Prove that every bilinear transformation with two non-infinite fixed points α , β is of the form $\frac{w-\alpha}{w-\beta} = K\left(\frac{z-\alpha}{z-\beta}\right)$, where K is a constant.
 - (b) Find the fixed points of the bilinear transformation $w = \frac{(2+i)z-2}{i+z}$, what is its normal form? Show that the transformation is Loxodromic.
- 7. (p) Find the image of the rectangle bounded by x = 0, y = 0, x = 2 and y = 3 under the transformation $w = \sqrt{2} e^{i\pi/4}$. Z
 - (q) Prove that the cross ratio remains invariant under a bilinear transformation.

UNIT-IV

8. (a) If X be a metric space with metric d then show that d₁ defined by

$$d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$$
, is also a metric on x.

- (b) If $\{x_n\}$ and $\{y_n\}$ are sequences in a metric space X such that $x_n \to x$ and $y_n \to y$. Then show that $d(x_n, y_n) \to d(x, y)$.
- 9. (p) Prove that the set A is open if and only if its complement is closed.
 - (q) Prove that the union of two nowhere dense sets in a metric space is nowhere dense.

5

5

5

5

VTM—13404 4 (Contd.)

UNIT-V

- (a) Prove that a mapping f of a metric space X into a metric space Y is continuous on X if and only if f⁻¹(V) is open in X for every open set V in Y.
 - (b) Let $f: R \to R$ such that

$$f(x) = \begin{cases} x & , & x \text{ is irrational} \\ -x & , & x \text{ is rational.} \end{cases}$$

Show that f is continuous only at x = 0.

- (p) Let X, Y be metric spaces and f: X → Y. Prove that f is continuous iff
 f⁻¹(B') ⊆ [f⁻¹(B)]' for every subset B of Y, B' = int B.
 - (q) If f be a continuous mapping of a connected metric space X into a metric space Y.
 Then prove that f(x) is connected.

4

www.sgbauonline.com