AR - 579

Fifth Semester B. Sc. (Part – III) Examination

5S : MATHEMATICS

Paper - IX (Analysis)

P. Pages: 8

Time: Three Hours

[Max. Marks: 60

- Note: (1) Question No. one is compulsory and attempt once.
 - Attempt one question from each unit.
- Choose the correct alternative :-1.
 - If P = (1,3,4,5,6) be the partition of (i) [1,6] with least upper bounds $M_1 = 2$, $M_2 = 3$, $M_3 = 4$, $M_4 = 5$ of a bounded function f on [1,6] then the value of U (p,f) is:
 - (a) 20
 - (b) 18
 - (c) 16
 - (d) 14.

1

(ii) $\int_{1}^{\infty} \frac{dx}{x^3}$ converges to: (a) 1

AR - 579

P.T.O.

(b)
$$\frac{1}{2}$$

$$(c) - 1$$

$$(d) - \frac{1}{2}$$

 $u(x,y)=C_1$ and $v(x,y)=C_2$ form:

1

$$\frac{\partial u}{\partial r} = -\frac{1}{r} \frac{\partial v}{\partial \theta} ; \frac{\partial v}{\partial r} \frac{1}{r} = \frac{\partial u}{\partial \theta}$$

(b)
$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} ; \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

$$\frac{\partial v}{\partial r} = -r \frac{\partial u}{\partial \theta} ; \frac{\partial u}{\partial r} = r \frac{\partial v}{\partial \theta}$$

$$\frac{(d)}{\delta r} = -r \frac{\delta v}{\delta \theta} + \frac{\delta v}{\delta r} = r \frac{\delta u}{\delta \theta}$$

AR-579

2

(v) Every bilinear Transformation with two non – infinite fixed points α, β is of the form

(a)
$$\frac{1}{w-\alpha} = k \cdot \frac{1}{w-\beta}$$

$$\frac{1}{w-\alpha} = -k \frac{1}{w-\beta}$$

(c)
$$\frac{z-\alpha}{w-\alpha} = k \frac{z-\beta}{w-\beta}$$

$$\frac{(d)}{w-\beta} = k \frac{z-\alpha}{w-\beta}$$

(vi) Fixed points of the transformation $w = \frac{z-1}{z+1}$

are:

- $(a) \pm i$
- (b) z ± i
- (c) $1 \pm i$
- (d) $1 \pm 2i$.

(vii) Every convergent sequence in a metric space is a :

- (a) Cauchy sequence
- (b) Unbounded sequence

AR-579

3

P.T.O.

	(c) divergent sequence
	(d) None of these.
(viii	Equation of circle with centre at $z = a$ and radius r is :
	(a) $ z + a = r$
	(b) $ z - a = r$
	(c) $ z + a = -r$
	$(d) \mid z - a \mid = -r.$
(ix)	If E is an infinite subset of a compact se K, then:
	(a) E has interior point
	(b) E has a limit point in K
	(c) E has not interior point
	(d) E has not a limit point in K.
(x)	If A⊂X, then A is said to be open if:
	(a) Every point of A is an interior point of A.
	(b) Every point of A is boundary point of A
	(c) Every point of A is not an interior point of A.
	(d) None of these.

UNIT I

(a) If f is continuous on [a,b] and F is continuous 2. and differentiable on [a,b] with $F'(x)=f(x), x \in [a,b]$ then prove that

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$
 4

If f be bounded and integrable function (b) defined on [a,b] with m, M as infimum, supremum respectively, then prove that there exists a number u between m and M such that

$$\int_{a}^{b} f(x) dx = \mu (b - a)$$
 3

- Show that any constant function defined on a (c) bounded closed interval is integrable.
- (p) If $f(x) \in C$, $a \le x < \infty$ and $\lim_{x \to \infty} x^p$ f(x) = A3. then prove that p > 1, $A \in R \Rightarrow \int_{a}^{\infty} f(x) dx$
 - Test the convergence of (q)

converges absolutely.

(i)
$$\int_{2}^{\infty} \frac{1}{\sqrt{x^2 - 1}} dx$$
 (ii)
$$\int_{1}^{\infty} \frac{e^{-x}}{x} dx$$
.

5. P.T.O. AR - 579

UNIT II

- (a) Show that the function f (z) = √|xy| is not analytic at the origin, although Cauchy Riemann equations are satisfied at that point.
 - (b) If w = f(z) = u + iv be analytic in domain D, and $z = re^{i\theta}$, where $u \cdot v \cdot r \cdot \theta$, are the real numbers then prove that

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \text{ and } \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$$
 5

- 5. (p) If $u = e^x \cdot \cos y$ then show that $u_{xx} + u_{yy} = 0$. Find the corresponding analytic function. 3
 - (q) Prove that $w = e^z$ is analytic and $\frac{dw}{dz} = e^z$.
 - (r) Show that $u = 2x x^3 + 3xy^2$ is harmonic and find its harmonic conjugate function. Hence find the analytic function f(z) = u + iv.

UNIT III

(a) Show that a bilinear transformation is a combination of translation, rotation, magnification and inversion.

AR-579

- (b) Find the fixed points of the transformation $w = \frac{z-1}{z+1}$. State whether it is hyperbolic, elliptic or loxodromic.
- (p) Find the bilinear transformation which maps the points z = 1 , -1 . ∞ into the points w = i + 1 , 1 i , 1.
 - (q) Prove that every bilinear transformation with a single non – infinite fixed point α can be put in the normal form

$$\frac{1}{w-a} = \frac{1}{z-\alpha} + K$$
, where K is a constant.

UNIT IV

- 8. (a) Prove that every convergent sequence in a metric space is a Cauchy sequence. Is the converse of above theorem is true? Give an example to support your answer. 3+3
 - (b) Prove that Every neighbourhood is an open set.
- 9. (p) Let X be an arbitrary non empty set. Define $D \text{ by } d(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$

Then show that d is a metric on X.

AR-579 7 P.T.O.

(q) If $\{x_n\}$ and $\{y_n\}$ are sequences in metric space X such that $x_n \to x$ and $y_n \to y$. Then show that $d(x_n, y_n) \to d(x, y)$.

UNIT V

- 10. (a) Let X, Y be metric spaces and f: X→Y. Then prove that f is continuous iff
 f⁻¹ (B) ⊆ f⁻¹ (B̄) for every subset B
 of Y.
 - (b) Prove that every totally bounded metric space is bounded.5
- (p) Let X , Y be metric spaces and f : x → y.
 Prove that f is continuous iff
 f⁻¹ (B') ⊆ [f⁻¹ (B)] for every subset B of
 y , B' = int B.
 - (q) Show that A = (0,1) is not compact. 3
 - (r) If B is closed and K is compact then prove that B ∩ K is compact.3