AU-128

(Contd.)

B.Sc. Part—III Semester—V Examination MATHEMATICS (NEW)

(Mathematical Analysis)

Paper-IX

Time: Three Hours [Maximum Marks: 60] N.B.:— (1) Question No. 1 is compulsory. (2) Attempt **ONE** question from each Unit. 1. Choose the correct alternatives :-(i) If $P_1 = (1, 2, 4)$ and $P_2 = (1, 3, 4)$ be two partitions of [1, 4] then common refinement of P, and P, is: (a) (1, 2, 4)(b) (1, 3, 4) (d) (1, 2, 3, 4) (c) (1, 4)(ii) Let F be bounded function defined on [a, b] and P be any partition of [a, b], if $\alpha \le 0$ is any real number then $U(P, \alpha f)$ is: (b) $\alpha U(P, f)$ (a) α L(P, f) (d) None of these (c) U(P, f)(iii) An improper integral $\int_{-\infty}^{b} \frac{1}{(x-a)^p} dx$ is divergent if: (a) $p \ge 1$ (b) p < 1(c) $p = \frac{1}{2}$ (d) None of these (iv) $\beta(m, n)$ is: 1 (d) mn

VOX --35304

	(v)	Αf	unction u(x, y) is harmonic in D if:			1	
		(a)	$u_{xx} + u_{xy} = 0$	(b)	$\mathbf{u}_{\mathrm{ex}} - \mathbf{u}_{\mathrm{vv}} = 0$		
		(c)	$u_{xy} + u_{yx} = 0$	(d)	$u_{xx} - u_{xy} = 0$		
	(vi)	Let u, v be real valued function defined on \mathbb{R}^2 and $f(z) = u + iv$; $f'(z) = u - iv$. If f is an analytic function and f is not constant, then:					
		(a)	f is always analytic	(b)	I may or may not be analytic		
		(c)	f is never analytic	(d)	$f + \overline{f}$ is analytic		
	(vii)	Αb	vilinear transformation $w = \frac{az + b}{cz + d}$, is	conf	ormal if:	1	
		(a)	ad - bc = 0	(b)	$a \neq 0, b \neq 0$		
		(c)	ad bc ≠ 0	(d)	$c \neq 0, d \neq 0$		
	(viii)	A bilinear transformation with two non-infinite fixed points α & β having Normal form					
		w -	$\frac{-\alpha}{-\beta} = K\left(\frac{z-\alpha}{z-\beta}\right)$ is Hyperbolic if:			1	
		(a)	K == 1	(b)	$ K \neq 1$, K is real		
		(c)	$ K \neq 1$, K is not real	(d)	None of these		
	(ix)	Let (X, d) be metric space and $A \subset X$. A is nonempty the diameter of A is $d(A)$ if A is unbounded then:					
		(a)	$d(A) \le \infty$	(b)	$d(A) = -\infty$		
		(c)	$d(\Lambda) = \infty$	(d)	d(A) = 1		
	(x)	Let	A be a nonempty closed subset of	metr	ic space (X, d) then A ^c is:	1	
		(a)	open	(b)	closed		
		(c)			None of these.		
				IT—			
2.	(a)	Pro	we that if $f(x)$ is monotonic function	n in.	a, b] then it is integrable on [a, b].	4	
	(b)	If $f, g \in R[a, b]$ and $f(x) \le g(x)$, $\forall x \in [a, b]$, then prove that $\int_a^b f(x) dx \le \int_a^b g(x) dx$.					
	(c)	Sho	ow that any constant function define	ed on	[a, b] is integrable on [a, b].	3	
VOX	353	04		2		(Contd.)	

www.sgbauonline.com

- 3. (a) If a function F(x) is continuous on [a, b] and F(x) is continuous and differentiable on [a, b] with F'(x) = F(x), $x \in [a, b]$, then prove that $\int_a^b F(x)dx = F(b) F(a)$.
 - (b) Let f(x) be a bounded function defined on [a, b] with bounds m and M. Then prove that : $m(b-a) \le L(P, f) \le U(P, f) \le M(b-a)$ for any partition P of [a, b].
 - (c) Define Darboux Upper and Lowers sums for bounded function f(x) defined on [a, b] and find them for function f(x) with bounds $m_1 = 1$, $m_2 = 2$, $m_3 = 3$, $m_4 = 4$ and $M_1 = 2$, $M_2 = 3$, $M_3 = 4$, $M_4 = 5$ for the partition $P = \{1, 3, 4, 5, 6\}$ of [1, 6].

UNIT-II

- 4. (a) Prove that $\int_{a}^{\infty} \frac{1}{x^{p}} dx$ converges if $p \ge 1$ and diverges if $p \le 1$ and $a \ge 0$.
 - (b) Show that $\int_{2}^{\infty} \frac{x^3}{\sqrt{x^7 + 1}} dx$ is divergent.
 - (c) Show that $\int_{2}^{\infty} \frac{\cos x}{\sqrt{1+x^3}} dx$ is Absolutely convergent.
- 5. (a) Prove that $\beta(m, n) = \frac{\lceil m \rceil n}{\lceil m + n \rceil}$.
 - (b) Show that $\int_{0}^{1} \sqrt{x(1-x)} \, dx = \pi/8$.
 - (c) Prove that $\ln \left[-\int_0^1 \left(\log \frac{1}{x} \right)^{n-1} dx \right]$.

UNIT—III

- 6. (a) If $f(z) = u(r, \theta) + iv(r, \theta)$ is analytic function in D, then prove that $u_r = \frac{1}{r}v_0$ and $v_r = -\frac{1}{r}u\theta$,

 CR equations in polar coordinates.
 - (b) Using Milne-Thomson method construct analytic function f(z), whose real part is $e^{-x}(x \cos y + y \sin y)$.

3

VOX---35304

(Contd.)

www.sgbauonline.com

7.	(a)	Let $f(z) = u + iv$ be analytic in the region D, where u and v have continuous partial derivate upto the second order. Then prove that u and v are harmonic functions.	tives 5
	(b)	If $w = u + iv$ is analytic function in the region R, then prove that $\frac{\partial (u, v)}{\partial (x, y)} = \left f^{+}(z) \right ^{2}$.	3
	(c)	If $w = u + iv$ is analytic function in D, then prove that $\frac{dw}{dz} - \frac{\partial w}{\partial x}$.	2
		UNITIV	
8.	(a)	Prove that the cross-ratio remains invariant under bilinear transformation.	5
	(b)	Find the image of the rectangle bounded by $x = 0$, $y = 0$, $x = 2$ and $y = 3$ under	the
		transformation $w = e^{i\pi/4} \times \sqrt{2}$.	5
9.	(a)	Prove that every bilinear transformation with single non-infinite fixed point α can be proved that every bilinear transformation with single non-infinite fixed point α can be proved that every bilinear transformation with single non-infinite fixed point α can be proved that every bilinear transformation with single non-infinite fixed point α can be proved that every bilinear transformation with single non-infinite fixed point α can be proved that every bilinear transformation with single non-infinite fixed point α can be proved that every bilinear transformation with single non-infinite fixed point α can be proved that every bilinear transformation with single non-infinite fixed point α can be proved to the fixed point α c	ut in
		the normal form $\frac{1}{w-\alpha} = \frac{1}{z-\alpha} + K$, where K is a constant.	5
	(b)	Find the bilinear transformation which maps the points $z = 1$, i1 into po $w - i$, o, $-i$.	ints 5
		UNIT—V	
10.	(a)	Let X be an arbitrary non-empty set. Define d by $d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$ show that 0	d`is
		metric on X.	5
-	(b)	Let (X, d) be a metric space and $x, y, x', y' \in X$. Show that	
		$ d(x, y) - d(x', y') \le d(x, x') + d(y, y').$	3
	(c)	Define :	
		(i) Limit point	
		(ii) Interior point of a set A.	2
11.	(a)	Let Y be a subspace of a complete metric space X. Then prove that Y is complete \Leftrightarrow closed.	Y is 5
	(b)	Prove that every neighborhood of a point is open set.	. 3
	(c)	Define :	
		(i) Cauchy sequence	
		(ii) Complete metric space.	2

VOX-35304

4

775