B.Sc. (Part—III) Semester—V Examination MATHEMATICS (NEW)

Paper—IX

(Mathematical Analysis)

Time: Three Hours]

[Maximum Marks: 60

Note:—(1) Question No. 1 is compulsory and attempt it once only.

- (2) Attempt ONE question from each unit.
- 1. Choose the correct alternative:
 - (i) Let P = (1, 3, 4, 5, 6) be a partition of [1, 6] and if $M_1 = 2$, $M_2 = 3$, $M_3 = 4$. $M_4 = 5$ are lub's of F then U(P, F) is:
 - (a) 11

(b) 10

(c) 12

- (d) 16
- (ii) Let f be a bounded function defined on [a, b] and P be any partition of [a, b], P* be refinement of P. Then L(P, f) and L(P*, f) satisfy:
 - (a) $L(P, f) \leq L(P^*, f)$

(b) $L(P, f) \ge U(P^*, f)$

(c) $L(P, f) \ge L(P^*, f)$

- (d) None of these
- (iii) An improper integral $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ converges to :

1

(a) \sqrt{x}

(b) -x

(c) x

- (d) 0
- (iv) An integral $\int_{0}^{\infty} e^{-kx} x^{n-1} dx$ is :

1

(a) $k^n n$

(b) $\frac{|n|}{k^n}$

(c) kⁿ

- (d) n
- (v) If a function f(z) = u(x, y) + iv(x, y) is Analytic in a region D, then:

1

(a) $u_x = u_y$ and $u_y = v_x$

(b) $u_x = -u_y$ and $u_y = -v_x$

(c) $u_x = v_y$ and $u_y = -v_x$

(d) None of these

WPZ-8279

(Contd.)

1

	(vi)	If w	= u + iv is analytic function in l	D, then	$\frac{dw}{dz}$ is:	1	
		(a)	$-\frac{\partial w}{\partial x}$	(b)	$\frac{\partial \mathbf{w}}{\partial \mathbf{y}}$		
		(c)	$-\frac{\partial w}{\partial y}$	(d)	$\frac{\partial \mathbf{w}}{\partial \mathbf{x}}$		
	(vii) A Mobius transformation w = az, a is real number, is:						
		(a)	Rotation transformation	(b)	Magnification transformation		
		(c)	Translation transformation	(d)	None of these		
	(viii) A bilinear transformation with only one fixed point is:					1	
		(a)	Loxodromic	(b)	Parabolic		
		(c)	Elliptic	(d)	Hyperbolic		
	(ix)	For	any collection of $\{A_{\alpha}\}$ open sets	$\bigcup_{\alpha} A_{\alpha}$	is:	1	
		(a)	Closed	(b)	Open		
		(c)	Semi-open	(d)	None of these		
	(x)	A n	A metric space (X, d) is complete if every Cauchy sequence in X is:				
		(a)	Bounded	(b)	Unbounded		
		(c)	Convergent	(d)	Divergent		
			UNI	TI			
2.	(a)			-	a, b] is integrable on [a, b] iff for a partition P of [a, b] with $\mu(P) < \delta$,	iny 5	
	(b)	If f		[0, 2], th	nen show that f is integrable in Riema		
			se over [0, 2] and $\int_{0}^{2} f(x) dx = 2$.		ŭ	5	
3.	(a)	Prove that if f is continuous and integrable on [a, b], then $\int_{a}^{b} f(x) dx = f(c) (b - a)$ where					
			s some point in [a, b].		-	5	
	(b)	Let	the function f be defined as	$f(x) = \begin{cases} & \\ & \end{cases}$	l, x is rational Show that f is r -1, x is irrational	not	
			ntegrable on $[0, 1]$. But $ f \in R$			5	
WPZ8279				2	(Con	itd.)	

(Contd.)

UNIT-II

4. (a) Prove that $\int_{a+}^{b} \frac{1}{(x-a)^p} dx$ converges if p < 1 and diverges if $p \ge 1$.

(b) Test the convergence of
$$\int_{2}^{\infty} \frac{1}{\sqrt{x^2 - 1}} dx$$
.

(c) Show that
$$\int_{1}^{\infty} \frac{e^{-x}}{x} dx$$
 is convergent.

5. (a) Prove that:

$$\beta(m,n) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx = \int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} dx.$$

(b) Evaluate:

$$\int_{0}^{\infty} \sqrt{x} e^{-\sqrt[3]{x}} dx.$$

(c) Prove that:

$$\int_{0}^{\infty} e^{-kx} x^{n-1} dx = \boxed{n/k^{n}}.$$

UNIT—III

- 6. (a) Prove that if f(z) = u(x, y) + iv(x, y) is analytic function in region D, then $u_x = v_y$ and $u_y = -v_y$ in D.
 - (b) Prove that $u = y^3 3x^2y$ is a harmonic function. Find its conjugate and the corresponding analytic function f(z) in terms of z.
- 7. (a) If the function f(z) = u + iv is analytic in the domain D, then prove that family of curves $u(x, y) = c_1$ and $v(x, y) = c_2$ form an orthogonal system, where c_1 and c_2 are constants.
 - (b) Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin, although C-R equations are satisfied at origin.

UNIT-IV

- 8. (a) Prove that cross-ratio remains invariant under a bilinear transformation. 5
 - (b) Let D be a region in z-plane is bounded by x = 0, y = 0, x = 2 and y = 1. Find the region in w-plane into which D is mapped under the transformation w = z + (1 2i).

WPZ—8279 3 (Contd.)

- 9. (a) Prove that every bilinear transformation with two non-infinite fixed points p, q can be put in the normal form $\frac{w-p}{w-q} = k \left(\frac{z-p}{z-q} \right)$ where k is constant.
 - (b) Find the fixed points of the transformation $w = \frac{z-1}{z+1}$; state whether it is elliptic, hyperbolic or Loxodromic. Find also its normal form.

UNIT-V

- 10. (a) If p is a limit point of a set A, then prove that every neighbourhood of p contains infinitely many points of A.
 - (b) Show that $d(x, y) = |x y|, \forall x, y \in R$ defines a metric on R.
 - (c) Define:
 - (i) Open set
 - (ii) Closed set.
- 11. (a) Define a Cauchy sequence in a metric space and prove that every convergent sequence in a metric space is a Cauchy sequence.
 - (b) Prove that for any finite collection A_1, \dots, A_n of open sets $\bigcap_{i=1}^n A_i$ is open set. 4
 - (c) Define a metric d on a space X.