**								
(iii) Ma _l	$ap \phi: G \rightarrow G^1$ is an onto homomorphism iff:			(c)	Show that every homomorphic image of an abelian			
(a)	G and G1 are isomorphic				group is abelian but the converse in not true. 5			
(b)	G and Gi are endomorphic		(d)	(d)	Let N be a normal subgroup of G.			
(c)	G and G1 are homomorphic				Define the mapping $f: G \to G/N$ such that $f(x) = N_x \ \forall \ x \in G$. Then prove that f is			
(d)	None of these.				homomorphism of G onto G/N. 5			
(iv) If f	e a homomorphism of group G onto G1 with				UNIT-III			
Ker	ernel K, then G ¹ is:		6.	(a)	Define subring. Prove that intersection of two subrings			
(a)	Isomorphic to G/K				is a subring. 1+4			
(b)	Isomorphic to K/G			(b)	Prove that a ring R is commutative if and only if $(a + b)^2 = a^2 + 2ab + b^2$.			
(c)	Isomorphic to G			(c)	Define Boolean ring.			
(d)	One-one homomorphism.		7.	(d)	Let the integer $n \ge 2$ and			
(v) A fi	eld which contains no proper subfield is:			1857Z	$Z_n = \{0, 1, 2, \dots, n-1\}$. Show that Z_n is			
. (a)	Prime field				commutative ring with unity under addition a multiplication mod n.			
* (b)	Subfield			7-3				
(c)	Division Ring			(e)	A nonempty subset S of ring R is subring of R if and only if $x - y$, $xy \in S \ \forall \ x, y \in S$.			
(d)	Integral domain.				UNIT-IV			
(vi) Ad	ni) A division ring must contain at least:		8.	(a)	Prove that the characteristic of an integral domain is			
(a)	One element				either 0 or a prime number.			
(b)	Two elements			(b)	Show that the commutative ring D is an integra			
(c)	Three elements				domain iff for a, b, $c \in D$ with $a \ne 0$, the relation $ab = ac$ implies that $b = c$.			
(d)	None of these.	• •		A- = 4				
UWO-45327	2 (0	Contd.)	UW	O-45	327 5 (Contd.)			

			i	•		
1	****	Δnnn	ears	dam	21n 10	٠
١	vu,	An in	wgiai	COLLA	GII 13	٠

- (a) always a field
- (b) never a field
- (c) a field when it is finite
- (d) none of these.

(viii)
$$p(x) = 2 - 3x + 2x^2 + x^3 \in R[x]$$
 is:

- (a) Associate polynomial
- (b) Relatively prime polynomial
- (c) Not monic polynomial
- (d) Monic polynomial.
- (ix) In a polynomial if all its coefficients are integers and its leading coefficient is 1 is called:
 - (a) Primitive polynomial
 - (b) Integer monic polynomial
 - (c) Reducible polynomial
 - (d) Irreducible polynomial.
- (x) In ring R, $x^2 = x$, $\forall x \in R$ then R is:
 - (a) Division ring
 - (b) Boolean ring
 - (c) Ring with unity
 - (d) Commutative ring. 10

UWO 45327 3 (Contd.)

UNIT-I

- (a) Let H be a subgroup of G. Let
 N(H) = {g∈G|gHg⁻¹ = H}. Show that H is normal in G if and only if N(H) = G.
 - (b) Let G be a group in which, for some integer n > 1, $(ab)^n = a^n b^n$ for all $a,b \in G$. Show that $G^{(n)} = \{x^n \mid x \in G\}$ is normal subgroup of G. 5
 - (c) Define Normal Subgroup.

1

 (d) If N and M are normal subgroup of group G, then prove that NM is also a normal subgroup of G.

4

(e) If a cyclic subgroup N of G is normal in G then prove that every subgroup of N is normal in G.

4

- (f) Define:
 - (i) Quotient Group
 - (ii) Simple Group.

1+1

UNIT-II

 (a) If f is homomorphism of a group G into a group G¹, then prove that ker f is a normal subgroup of G.

5

(b) If H, K are normal subgroup of G:

Prove that
$$\frac{KH}{H} \approx \frac{K}{K \cap H}$$
 5

UWO-45327

4

(Contd.)