B.Sc. (Part—III) Semester—V Examination PHYSICS

Time :	: Three	Hou	irs]			[Maximum Marks: 80					
Note: -(1) ALL questions are			L questions are compi	ulsory.							
	(2)	Dra	w neat diagram where	ever necessary	<i>7</i> .						
C	onstan	its:									
R	est ma	ss of	an electron $m_0 = 9.1$	1×10 ⁻³¹ kg							
P	lanck's	cons	constant $h = 6.63 \times 10^{-34} \text{ J.S}$								
V	elocity	of li	ght $c = 3 \times 10^8$ m/s.								
1. (A	A) Fill	in th	ne blanks :								
	(i)	(i) The wave function which satisfies the condition $\int \psi \psi^* dv = 1$ is calle wave function.									
	(ii)	S.I.	unit of hybrid parame	eter input imp	edance (l	h _i) is					
	(iii)	Nuc	lear forces are	range for	ces.						
	(iv)	Pha	se shift between input	and output o	of single	stage CE amplifier is 2					
(E	 Cho 	oose correct alternative :									
	(i)	The	unit of conductance i	is:							
		(a)	Henry		(b)	mho					
		(c)	ohm		(d)	Farad					
	(ii)	The	constant \hbar is equal t	to:	-						
		(a)	$\frac{2\pi}{h}$		(b)	$2\pi h$					
		(c)	$\frac{h}{2\pi}$		(d)	$\frac{\pi}{2h}$					
	(iii)	The Planck's radiation law fits the experimental spectral distribution curve in									
		(a)	Short wavelength ran	ige	(b)	Long wavelength region					
		(c)	The entire wavelengt	h range	(d)	None of the above					
VTM—13406			1		(Contd.)						

		(iv) The de-Broglie's relation is:					
		(a) $\lambda = \frac{C}{V}$ (b) $\lambda = \frac{h}{P}$					
	•	(a) $\lambda = \frac{C}{V}$ (b) $\lambda = \frac{h}{P}$ (c) $C = \frac{V}{\lambda}$ (d) $C = \frac{\lambda}{V}$	2				
	(C)	Answer in one sentence:					
		(i) What is positive feedback?					
		(ii) What is black body radiation?					
		(iii) Write Schrodinger's time independent equation.					
		(iv) What is thermal runaway?	4				
	EIT	THER					
2.	(A)	What is de-Broglie's hypothesis ?	2				
	(B)	Find the de-Broglie's wavelength of an electron moving with velocity 1000 m/sec	. 4				
	(C)	Describe Davission and Germer experiment.	6				
	OR						
}.	(P)	Describe gamma ray thought experiment to illustrate uncertainty principle.					
	(Q)	Explain Wein's law of black body radiation.	2				
	(R)	Obtain the relation between group velocity (V_g) and phase velocity (V_p) . Show that non dispersive medium both are same.	fo:				
	EIT	THER					
١.	(A)	What is wave function? Give its physical significance and limitations of wave function	n 6				
	(B)	Solve the Schrodinger equation for a particle in one dimensional rigid box. Find the eigenvalue and eigen function.	he 6				
	OR						
	(P)	Derive Schrodinger time dependent equation.	5				
	(Q)	What is (i) zero point energy (ii) tunneling effect ?	4				
	(R)	Explain Eigen values and Eigen functions.	3				
TM	1—13	406 2 (Cont	d.)				

www.sgbauonline.com

	EIT	HER	
6.	(A)	Explain the concept of space quantization and electron spin.	4
		Describe Stern-Gerlach experiment and discuss its result.	
		What is L-S coupling?	
	OR		
7.	(P)	State properties of X-rays. Write down its applications.	1
		State and explain Duane-Hunt's law.	
		Distinguish between emission spectra and absorption spectra.	:
	EIT	HER	
8.	(A)	Describe the construction and working of nuclear reactor with its uses.	1
	(B)	Explain Pauli's neutrino theory of β-decay.	
	(C)	Draw a labelled diagram of G.M. counter.	2
	OR		
9,	(P)	Define (i) Nuclear charge (ii) Nuclear radius.	-
	(Q)	What is Nuclear Fission?	2
	(R)	State Gieger-Nuttal law.	-
	(S)	What is β -decay? Explain three modes of β -decay.	4
	EIT	HER	
10.	(A)	Obtain two basic equations of hybrid parameters for transistor in CE mode.	4
	(B)	Draw hybrid equivalent circuit for CE amplifier. Obtain an expression for input impedant	Ю
		and current gain in CE amplifier.	(
	(C)	What is an operating point ?	1
	OR		
11.	(P)	State and explain different types of distortions in amplifier.	(
		Explain Class A, Class B and Class C amplifier.	6
		HER	
12.	(A)	Explain with circuit diagram, the construction and working of phase shift oscillator)T.
	(B)	Explain construction and working of Astable Multivibrator.	5
	(C)	What is positive and negative feedback in amplifier ?	2
	OR		
13.	(P)	Explain construction and working of monostable multivibrator.	5

825

5

(Q) Explain construction and working of Weinbridge oscillator.

(R) State the advantages of negative feedback.

www.sgbauonline.com