AU-131

# B.Sc. Part-III Semester-V Examination

|                                                                           |                                                     |        |       |                  | I                      | PHYSIC    | CS                             |  |
|---------------------------------------------------------------------------|-----------------------------------------------------|--------|-------|------------------|------------------------|-----------|--------------------------------|--|
| Time                                                                      | : T                                                 | iree l | Hours | s]               |                        |           | [Maximum Marks: 80             |  |
|                                                                           |                                                     | Not    | e :   | -(1)             | All questions are con  | npulsory  | y.                             |  |
|                                                                           |                                                     |        |       | (2)              | Draw neat diagram v    | vherever  | r necessary.                   |  |
| Constants:                                                                |                                                     |        |       |                  |                        |           |                                |  |
| Mass of an electron $(m_g) = 9.11 \times 10^{-31} \text{ kg}$             |                                                     |        |       |                  |                        |           |                                |  |
|                                                                           | Planck's constant (h) = $6.63 \times 10^{-34}$ J.S. |        |       |                  |                        |           |                                |  |
| Velocity of light (c) = $3 \times 10^8 \text{m/s}$                        |                                                     |        |       |                  |                        |           |                                |  |
| 1. (A) Fill in the blanks:—                                               |                                                     |        |       |                  |                        |           | 2                              |  |
| (i) Stopping potential is directly proportional to of incident radiation. |                                                     |        |       |                  |                        |           | onal to of incident radiation. |  |
|                                                                           |                                                     | (ii)   | Ster  | n Ge             | rlach experiment prov  | ves the c | concept of                     |  |
|                                                                           |                                                     | (iii)  | G.M   | l. coi           | unter should be operat | ed in     | region.                        |  |
|                                                                           |                                                     | (iv)   | Mul   | tivib            | rator hast             | eedback   | ς.                             |  |
|                                                                           | (B) Choose correct alternative :—                   |        |       |                  |                        |           | 2                              |  |
|                                                                           |                                                     | (i)    | Asta  | ıble l           | Multivibrator uses     | ene       | ergy strong element.           |  |
|                                                                           |                                                     |        | (a)   | one              |                        | (b)       | two                            |  |
|                                                                           |                                                     |        | (c)   | thre             | e                      | (d)       | four                           |  |
|                                                                           |                                                     | (ii)   | The   | cons             | stant h is equal to:   |           |                                |  |
|                                                                           |                                                     |        | (a)   | $\frac{h}{2\pi}$ |                        |           | $\frac{2\pi}{h}$               |  |
|                                                                           |                                                     |        | (c)   | 2πh              |                        | (d)       | $\frac{h}{2}$                  |  |
|                                                                           | rum tubes, transistors and in any conductor is      |        |       |                  |                        |           |                                |  |
|                                                                           |                                                     |        |       |                  | s noise.               | 413       |                                |  |
|                                                                           |                                                     |        | (a)   | Inte             |                        | (b)       | External                       |  |
| VOX                                                                       | 3520                                                | 17     | (c)   | Sno              | ΓL                     | (d)<br>1  | Partition (Contd.)             |  |
| VUA                                                                       | ונונ                                                | ,,     |       |                  |                        |           | (Contact                       |  |

# www.sgbauonline.com

|     |     | (iv)                                                                                                                              | Sma    | all letters like s, p,                                                                                                 | d, f and i, s  | , j        | are used to describe the state of _ |                |
|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------|----------------|------------|-------------------------------------|----------------|
|     |     |                                                                                                                                   | (a)    | atom                                                                                                                   | f)             | 5)         | molecule                            |                |
|     |     |                                                                                                                                   | (c)    | electron                                                                                                               | (0             | <b>d</b> ) | ions                                |                |
|     | (C) | Ans                                                                                                                               | wer:   | in ONE sentence :-                                                                                                     | _              |            |                                     | 4              |
|     |     | (i)                                                                                                                               | Wh     | at is Raman shift?                                                                                                     |                |            |                                     |                |
|     |     | (ii)                                                                                                                              | Wh     | at is Photon?                                                                                                          |                |            |                                     |                |
|     |     | (iii)                                                                                                                             | Wh     | at is positive feedba                                                                                                  | ck?            |            |                                     |                |
|     |     | (iv)                                                                                                                              | Wh     | at is beta decay?                                                                                                      |                |            |                                     |                |
|     | EIT | HER                                                                                                                               |        |                                                                                                                        |                |            |                                     |                |
| 2.  | (A) | (A) Give assumptions of Planck's Quantum theory.                                                                                  |        |                                                                                                                        |                |            |                                     |                |
|     | (B) | B) What is threshold frequency and stopping potential in photoelectric effect?                                                    |        |                                                                                                                        |                |            |                                     |                |
|     | (C) | Defi                                                                                                                              | ne C   | Group velocity and P                                                                                                   | hase velocity  | y ai       | nd derive relation between them.    | 6              |
|     | OR  |                                                                                                                                   |        |                                                                                                                        |                |            |                                     |                |
| 3.  | (P) | P) Explain dual Nature of Matter.                                                                                                 |        |                                                                                                                        |                |            |                                     |                |
|     | (Q) | )) State and explain Heisenberg's uncertainty principle.                                                                          |        |                                                                                                                        |                |            |                                     |                |
|     | (R) | Desc                                                                                                                              | eribe  | Davisson and Gern                                                                                                      | ner Experime   | ent        | to prove wave nature of electron.   | 6              |
|     | EIT | HER                                                                                                                               |        |                                                                                                                        |                |            |                                     |                |
| 4.  | (A) | What do you mean by tunneling through the barrier?                                                                                |        |                                                                                                                        |                |            |                                     |                |
|     | (B) | B) What are the conditions and limitations that the wave function must satisfy?                                                   |        |                                                                                                                        |                |            |                                     |                |
|     | (C) |                                                                                                                                   |        | nree dimensional timinger's equation.                                                                                  | e independen   | it S       | chrodinger wave equation from time  | dependent<br>6 |
|     | OR  |                                                                                                                                   |        | -                                                                                                                      |                |            |                                     |                |
| 5.  | (P) | Obta                                                                                                                              | iin S  | ichrodinger wave eq                                                                                                    | uation for sin | npl        | e Harmonic Oscillator.              | 3              |
|     | (Q) | Obta                                                                                                                              | ain th | he quantum mechani                                                                                                     | cal operator:  | for        | momentum.                           | 3              |
|     | (R) | Obtain an expression for the wave function for a particle in three dimensional box and<br>that energies of particle are given by: |        |                                                                                                                        |                |            |                                     |                |
|     |     |                                                                                                                                   | E =    | $\frac{\pi^{2}h^{2}}{2m} \left\{ \frac{n_{x}^{2}}{a^{3}} + \frac{n_{y}^{2}}{b^{2}} + \frac{n_{z}^{2}}{c^{4}} \right\}$ |                |            |                                     | 6              |
| VOX | 353 | 07                                                                                                                                |        |                                                                                                                        | 2              |            |                                     | (Contd.)       |

#### www.sgbauonline.com

### **EITHER** (A) What are selection rules? Explain L-S coupling. 6. 3 (B) Explain quantum theory of Raman effect. 4 (C) Describe the experimental arrangement for the study of Raman effect. 5 OR (P) State and explain Duane Hunts's Law. 7. 4 (Q) What is L-S coupling? (R) What are quantum numbers? Explain the significance of four quantum numbers. EITHER 8. (A) State the properties of neutrino. 2 (B) Explain: --(i) Quenching (ii) Plateau-region. (C) What is the range of alpha particles? Describe experimental method for its determination. OR 9. (P) State the uses of Nuclear Reactor. 2 (Q) Explain the different types of $\beta$ -decay. (R) Explain:— Binding energy (ii) Nuclear stability. 4 EITHER 10. (A) What is class A amplifier? (B) State and explain different types of distortions in amplifier. (C) Obtain two basic equations of hybrid parameters for transistor in CE mode. OR 11. (P) What is an operating point? 2 (Q) Obtain an expression for the gain of Cascade amplifier. 4 (R) Draw hybrid equivalent circuit of two stage RC coupled amplifier for mid frequency region and discuss its gain frequency response. 6 3

(Contd.)

VOX --35307

## www.sgbauonline.com

## EITHER

| 12. | (A) | Explain the voltage series and current series negative feedback.             | 4 |
|-----|-----|------------------------------------------------------------------------------|---|
|     | (B) | Discuss the construction and working of phase shift oscillator with diagram. | 6 |
|     | (C) | State advantages of Wein Bridge Oscillator.                                  | 2 |
|     | OR  |                                                                              |   |
| 13. | (P) | Discuss the operation of bistable multivibrator with diagram.                | Š |
|     | (Q) | What is Barkhausen Criterion for oscillation?                                | 2 |
|     | (R) | Explain the action of monostable multivibrator with neat diagram.            | 5 |