- (B) What is an oscillator? Explain the Barkhausen criterion for sustained oscillation.
- (C) Draw the circuit diagram of phase shift oscillator, and explain its working. 5

OR

- 13. (P) What is multivibrator? Draw the circuit diagram of a stable multivibrator and explain its working.
 - (Q) Discuss the effect of negative feedback on distortion in amplifier. 4
 - (R) Determine the frequency of oscillation of Colpitts oscillator, if $C_1=100 \,\mathrm{Pf}$, $C_2=1000 \,\mathrm{Pf}$ and $L=5 \,\mathrm{uH}$.

Fifth Semester B. Sc. (Part - III) Examination

5S - PHYSICS

P. Pages: 8

AR-581

Time: Three Hours]

[Max. Marks: 80

- Note: (1) All questions are compulsory.
 - (2) Draw suitable and neat diagram wherever necessary.
- 1. (A) Fill in the blanks:—
 - (i) GM counter should be operated in -.
 - (ii) The magnitude of orbital angular momentum according to vector atom model is ——.
 - (iii) The energy level with more than one eigen function is called as —— energy level.
 - (iv) The input impedance of amplifier with negative feedback. 2
 - (B) Choose the correct alternative :-
 - (i) Orbital quantum number determines the shape of —.
 - (a) 'Nucleus
- (b) Atom
- (c) Electron orbit (d) None of these.

0

P.T.O.

	(ii)	In characteristic x-ray spectra k_{β} line is			EITI	HER	
		produced due transition of electron from		10.	(A)	Define :	
		(a) K shell to L shell				(i) Stability factor.	
	4	(b) K shell to M shell				(ii) Signal to noise ratio.	
		(c) L shell to K shell			(B)	Draw the circuit diagram of two stage Re	
		(d) M shell to K shell.				coupled amplifier. Derive an expression for	
	(iii)	Negative feedback in amplifier		•		voltage gain in mid frequency region.	
4		(a) Reduces voltage gain			(C)	What is Miller effect? Explain.	
		(b) Reduces output impedance.			(D)	Discuss the gain frequency response of RC coupled amplifier.	
		(c) Reduces noise.				OR	
		(d) All of above.			(5)	•	
	(iv)	x-rays are —		11.	(P)	Explain class A, Class B, and class C amplifier.	
		(a) Charged particles.	N N		(Q)	What are hybrid parameters?	
		(b) Electromagnetic radiations of long wave length.			(R)	What is distortion? Explain phase distortion	
		(c) Stream of neutrons.				in amplifier.	
		(d) Electromagnetic radiations of short wave length. 2			(S)	Draw hybrid equivalent circuit for CE amplifier.	
(C)	Ans	wer in one sentence.			EIT	HER	
	(i)	What is Compton effect ?		12.	(A)	State advantage and disadvantages of negative	
· . •	(ii) _.	What is α -decay ?				feedback. 4	
AR -581		2		AR	-581	7 P.T.O.	

EITHER

8. (A) What is range of α-particle. State and explain Geiger-Nuttal law.

(B) Define :-

Mass defect.

(ii) Binding energy.

(C) Explain the nuclear fission with example. 3

(D) What is chain reaction? State its types. 2

OR

Describe nuclear fusion as a source of steller energy.

(Q) Discuss Gamow's theory of α-decay.

(R) What is quenching in GM counter? Explain.

(S) Define :-

Dead time.

(ii) Recovery time.

(iii) What is noise?

(iv) What is degree of degeneracy?

EITHER

(A) Derive Einstein's photoelectric equations. 3

(B) What is De-Broglie Hypothesis? Show that the wavelength '\lambda' associated with an electron of mass 'm' and energy 'E' is given by .

$$\lambda = \frac{h}{(2mE)^{1/2}}$$

(C) State and explain Planck's law of radiation.

(D) If the work function of certain metal is 3eV. What is its threshold wavelength. $(h=6.63 \times 10^{-34} \text{J.sec} \text{ and } C=3 \times 10^8 \text{ m/sec})$ 2

OR

(P) Define :-

Photoelectric work function.

(ii) Threshold wavelength.

(iii) Stopping potential.

Show that group velocity is equal to particle velocity.

AR-581

P.T.O.

State and explain Heisenberg's uncertainty principle for position and momentum. 3		(Q)	Give the physical significance of wave
principle for position and momentum.			function ψ . 5
Calculate De-Broglie wavelength of electron which has a maximum kinetic energy equal to 25 eV. (mass of electron is $9.1 \times 10^{-31} \mathrm{Kg}$)		(R)	What are degenerate and nondegenerate energy levels.
3		EITI	HER
HER	6.		State and explain Duane and Hunt's law. 4
find quantum mechanical operator for kinetic energy.		(B)	What is Raman effect? Describe an experimental arrangement to study Raman effect. State the applications of Raman effect.
Derive Schrodinger's time dependent equation for matter waves.			effect. State the applications of Raman effect.
What is normalized wavefunction? Explain.		(C)	An x-ray tube operates with accelerating voltage of 30Kv. Calculate the minimum wavelength of x-rays emitted.
Explain the term :			OR
(i) Eigen value and (ii) Eigen function. 3	7.	(P)	Explain the concept of space quantization and electron spin in vector atom model. 4
OR		(Q)	What are stokes and antistokes line in Raman spectrum? Give Quantum theory of Raman
Show that minimum energy of a particle confined in rigid cubical box of length 'l' is		(T) :	effect. 5
$E = \frac{3 h^2 \pi^2}{2 m l^2}$, Where, m is mass of particle.		(K)	What are selection rules? State the selection rules for the spectral lines.
	Define operators in quantum mechanics, and find quantum mechanical operator for kinetic energy. Derive Schrodinger's time dependent equation for matter waves. 4 What is normalized wavefunction? Explain. 2 Explain the term:— (i) Eigen value and (ii) Eigen function. 3 OR Show that minimum energy of a particle confined in rigid cubical box of length 't' is $E = \frac{3 h^2 \pi^2}{2m t^2}$, Where, m is mass of particle.	Define operators in quantum mechanics, and find quantum mechanical operator for kinetic energy. Derive Schrodinger's time dependent equation for matter waves. What is normalized wavefunction? Explain. Explain the term:— (i) Eigen value and (ii) Eigen function. 3 OR Show that minimum energy of a particle confined in rigid cubical box of length 'T is $E = \frac{3 h^2 \pi^2}{2 m l^2}$, Where, m is mass of particle.	Define operators in quantum mechanics, and find quantum mechanical operator for kinetic energy. Derive Schrodinger's time dependent equation for matter waves. What is normalized wavefunction? Explain. Explain the term:— (i) Eigen value and (ii) Eigen function. OR (Q) Show that minimum energy of a particle confined in rigid cubical box of length 't' is $E = \frac{3 \hbar^2 \pi^2}{2m t^2}$, Where, m is mass of particle.

AR-581 P.T.O.

AR -581