B.Sc. Part—III (Semester—V) Examination

PHYSICS

Time: Thro	e Hours]		[Maximum Marks : 8	3(
N.B. :	— (1) All questions are compulsory.			
	(2) Draw neat diagram wherever necess	sary.		
Consta				
	elocity of light (c) = $3 \times 10^8 \text{m/s}$			
	anck's constant (h) = 6.63×10^{-34} .			
	lass of an electron (m) = 9.11×10^{-31}	kg		
, ,	ll in the blanks:			
	The energy of a photon having frequence			
) Stoke's lines are more intense than		in Raman effect.	
	i) Hydrogen bomb is based on			
	Hybrid parameter, hie stands for			2
(B) C	hoose correct alternative:			
(i)	In Phase Shift Oscillator each RC netwo	rk pr	oduces a phase shift of:	
	(a) 90°	(b)	180°	
	(c) 360°	(d)	60°	
(ii) The de Broglie relation is given by :			
	(a) $\lambda = c/v$	(b)	$\lambda = v/c$	
	(c) $\lambda = \frac{h}{P}$	(d)	$\lambda = \frac{P}{h}$	
(ii	i) Principal quantum number (n) determines	the s	size of:	
	(a) Electron orbit	(b)	Proton	
	(c) Electron	(d)	Nucleus	
(i	r) hfe stands for :			
	(a) Reverse current ratio	(b)	Forward voltage ratio	
	(c) Forward current ratio	(d)	Reverse voltage ratio	2

www.sgbauonline.com

	(C)	Answer in one sentence each:	
		(i) What are two main types of spectra?	
		(ii) Why G.M. Counter cannot detect unchanged particle?	
		(iii) What is stopping potential?	
		(iv) What is β-decay?	4
	EIT	'HER	
2.	(A)	State Heisenberg's uncertainty principle.	2
	(B)	If uncertainty in the position of an electron is 1×10^{-10} m. Calculate uncertainty in its mo	omentum.
			4
	(C)	What is Photoelectric effect? Explain its characteristics.	6
	OR		
3.	(P)	State Wein's Displacement Law.	2
	(Q)	What is Compton effect? Explain it on the basis of quantum theory.	4
	(R)	Describe thought experiment with single slit diffraction of electrons in support to ur principle.	ncertainty 6
	EIT	THER	
4.	(A)	What is wave function ⊎? Explain its physical significance.	4
	(B)	Explain the term zero point energy.	2
	(C)	Obtain Schrodinger's time independent equation.	6
	OR		
5.	(P)	Explain the terms:	
		(i) Eigen Functions	
		(ii) Eigen Values.	4
	(Q)	State the limitations of wave function.	2
	(R)	Solve the Schrondinger's wave equation for a free particle in one-dimensional box	x. Hence
		obtain its eigen values.	6

2

(Contd.)

UNW--27448

www.sgbauonline.com

EITHER

6.	(Δ)	Explain emission spectra and absorption spectra.	4
	(B)	State the selection rules for L and J.	2
	(C)	Describe the Stern-Gerlach experiment and discuss its result.	6
	OR		
7.	(P)	State and explain Moseley's Law. Give its importance.	4
	(Q)	What are the stoke's lines and antistoke's lines?	2
	(R)	Explain the origin of characteristic X-Rays spectra by using energy level diagram.	6
	EIT	HER	
8.	(A)	Explain the terms:	
		(i) Mass defect (Δm)	
		(ii) Binding energy.	4
	(B)	What is Geiger-Nuttal Law?	2
	(C)	Describe the construction and working of G.M. Counter.	6
	OR		
9.	(P)	State the properties of α -particles.	2
	(Q)	Distinguish between Nuclear fission and Nuclear fusion.	4
	(R)	Describe the construction and working of Nuclear Reactor with diagram.	6
	EIT	HER	
10.	(A)	What are the four hybrid parameters?	2
	(B)	What is noise? Explain the different types of noises.	4
	(C)	Draw hybrid equivalent of CE amplifier and derive the expression for input impedance current gain.	e and

www.sgbauonline.com

0R	
----	--

11.	(P)	Define stability factor.	2
	(Q)	Explain the classification of amplifiers on the basis of operating point.	4
	(R)	Draw equivalent circuit of two stage RC coupled amplifier. Obtain an expression for its gain mid frequency range.	ain 6
	EIT	HER	
12.	(A)	State the advantages of Negative Feedback.	2
	(B)	Distinguish between Amplifier and Oscillator.	4
	(C)	Explain construction and working of Hartley Oscillator.	6
	OR		
13.	(P)	State the applications of bistable multivibrator.	2
	(Q)	Explain the construction and working of Astable Multivibrator.	6
	(R)	Obtain an expression for voltage gain with feedback.	4