B.Sc. (Part—III) Semester—VI Examination CHEMISTRY (Old) (Upto S/16)

Time—Three	: Hours]	[Maximum Marks—80
	in the blanks :	2
(i)		having different elements
(ii)	determined by the	ich equivalence point is measurement of electrode nt stages is called
(iii)	chromophore but	does not act itself as when attached to it shifts band towards longer ed
(iv) The light of only one wavelength is kr as		
(B) Sele	ect the correct altern	native: 2
(i)		hemical units from which formed are known as:
	(a) dimers	
• .	(b) monomers	
	(c) trimers	•
	(d) none of these	
UBS-48917	t	(Contd.)

(ii)	When a substance absorbs blue colour, ti	he
	complimentary colour transmitted by it is	3 :

- (a) red
- (b) orange
- (c) green
- (d) yellow
- (iii) The type of bending vibrations in which two atoms move up and down the plane with respect to central atom is called:
 - (a) scissoring
 - (b) rocking
 - (c) wagging
 - (d) twisting
- (iv) The pH of a solution is defined by equation:
 - (a) $pH = [H^{+}]$
 - (b) $pH = [OH^{-}]$
 - (c) $pH = -log_{10}[H^*]$
 - (d) $pH = log_{10}[OH^-]$
- (C) Answer in one sentence:
 - (i) Define electromagnetic spectrum.
 - (ii) What are metalloporphyrins?
 - (iii) What is chemical shift?
 - (iv) What do you mean by an exoergic nuclear reaction?

UBS--48917

2

(Contd.)

UNIT-VI

- 12. (A) Discuss liquid drop model of nucleus. What are its advantages?
 - (B) How is the pH of a solution determined by using hydrogen electrode?
 - (C) Calculate the Q value of the following nuclear reaction:

$$^{27}_{13}$$
Al + $^{4}_{2}$ He $\rightarrow ^{30}_{14}$ Si + $^{1}_{1}$ H + Q

(Given: $^{27}_{13}$ Al = 26.9815 amu, $^{4}_{2}$ He = 4.0026 amu

$$_{14}^{30}$$
Si = 29.9738 amu, $_{1}^{1}$ H = 1.0078 amu)

State whether the reaction is endoergic or exoergic (1 amu = 931.5 MeV).

OR

- 13. (P) Describe acid-base type of potentiometric titration.
 - (Q) Give two applications of radioisotopes in each of the following:
 - Industry
 - (ii) Agriculture.

(R) What are the advantages of quinhydrone electrode in the determination of pH of a solution?

UBS-48917

3050

(R) 0.24 g of an organic compound gave 0.1628 g of silver iodide in carius experiment. Find the percentage of iodine.

(Given: Atomic weight of iodine = 127

Molecular weight of silver iodide = 235).

4

UNIT--V

- 10. (A) State and explain Stark-Einstein law of photochemical equivalence.
 - (B) Explain the terms:
 - (i) Intersystem Crossing (ISC)
 - (ii) Internal Conversion (IC).

4

- (C) The optical density of a 0.003 M solution of a substance is 2 at 660 mμ using 1 cm cell. Calculate its extinction coefficient.
- 11. (P) Explain non-radiative process.
 - (Q) Define quantum yield. Give reasons for high quantum yield in photochemical reactions. 4
 - (R) Calculate the energy of one Einstein of a light of wavelength 3000 Å.

(Given: $N = 6.02 \times 10^{23}$, $h = 6.62 \times 10^{-34}$ Js and $C = 3 \times 10^8$ s⁻¹).

UBS-48917 6 (Contd.)

UNIT-I

- 2. (A) Define with example:
 - (i) Labile complexes
 - (ii) Inert complexes.

4

- (B) What is paper chromatography? Explain ascending paper chromatography.
 4
- (C) Differentiate between a colorimeter and a spectrophotometer.

OR

- 3. (P) Explain SN2 mechanism in square planar complexes involving entering ligand as nucleophile.
 - (Q) What is Rf value? Give the factors affecting it.

(R) What is Beer-Lamberts law? Give its mathematical expression.

UNIT---II

- 4. (A) What are metal carbonyls? How are they classified?
 - (B) What are silicones? Give their applications. 4
 - (C) Explain the role of haemoglobin and myoglobin in oxygen transport process.

OR

UBS-48917

3

(Contd.)

5.	(P)	Give the reaction of trimer of phosphonit	rilic		(Q)	How will you distinguish following compound
		chloride (PNCl ₂) ₃ with: (i) water				on the basis of IR spectroscopy — acetaldehyd and acetone?
	(Q)	(ii) ammonia. Describe the role of Ca ²⁺ ion in biological activi	4 ties. 4		(R)	How will you purify benzoic acid b crystallisation?
	(R)	Explain the structure of Ni(CO) ₄ on the basic valence bond theory. UNIT—III	s of 4	8.	(A)	UNIT—IV Define with example: (i) Equivalent protons
6.	(A)	Define with example: (i) Bathochromic shift (ii) Hypsochromic shift.	4		(B)	(ii) Non-equivalent protons. Explain in brief the principle of mas spectrometry.
	(B)	Calculate the number of fundamental mode vibration for following molecules: (i) NO	s of		(C)	Calculate m/c value for molecular ion of each of the following: (i) CH ₃ -C-CH ₃
	(C)	(ii) H ₂ O How will you purify naphthalene	4 by		٠	(ii) C ₆ H ₅ -OH.
		sublimation ? OR	4	9.		OR Explain the mass spectrum of ethanol. How many peaks you will observe in the NMF
7.	(P)	 Explain with example: (i) σ - σ* (sigma - sigma star) transitions (ii) π - π* (pi - pi star) transitions. 	s 4			spectrum of: (i) CH ₃ -CH ₃
UBS	489	17 4 (Con	ntd.)	UB\$-	489	(ii) CH ₃ -CH ₂ -CH ₃ . 4