B.Sc. (Part—III) Semester—VI Examination 6S: CHEMISTRY

Γin	ne : T	hree	Hour	s]			[Maximum]	Marks: 80
	N.B	3. :—	-(1)	All questions are co	mpulsory.			
			(2)	Question No. 1 carri	ies 8 marks while	eac	ch of remaining questions ca	rries
				12 marks.				
			(3)	Draw diagrams and	write equations wl	her	ever necessary.	
			(4)	Use of scientific calc	culator is allowed.	,		
1.	(A)	Fill	in th	e blanks :				
		(i)	The	geometry of Fe(CN)	6 is			
		(ii)	The	central metal ion pre	sent in Hemoglobi	in i	s	
		(iii)	CH	3CH2OH shows	nmr signals in r	ımı	r spectrum.	
		(iv)	- L	og ₁₀ [H ⁺] is known as				¹ /₂ ×4=2
	(B)	Sele	ect th	e correct alternative :				
		(i)	CH	molecule shows	electronic trans	itic	on.	
			(a)	$\sigma \rightarrow \sigma^*$	(1	b)	$n \rightarrow \sigma^*$	
			(c)	$\pi \rightarrow \pi^*$	(6	d)	$n \rightarrow \pi^*$	
		(ii)		rgy change associate tion.	d with a nuclear re	eac	tion is defined as va	lue of that
			(a)	Q	(1)	b)	R	
			(c)	Electronic	(6	d)	€	
		(iii)		emission of Electron known as ef		wł	nen light of suitable waveleng	gth falls on
			(a)	Photoelectric Effect	T)	b)	Compton Effect	
			(c)	Threshold Frequency	<i>i</i> (6	d)	None of the above	
		(iv)	In n	nuscles myoglobin has	s oxygen sto	orin	ng capacity than hemoglobin.	
			(a)	More	(I	b)	Less	
			(c)	Equal	(6	d)	None of the above	½×4=2
	(C)	Ans	wer	in one sentence each	:			
		(i)	Def	ine Fission yield.				
		(ii)	Def	ine chromatography.				
		(iii)	Giv	e the range of fingerp	rint region in IR S	pec	etroscopy.	
		(iv)	Wh	at is base peak?				1×4=4

UNIT-I

2.	(A)	What are labile and inert complexes? How does charge on metal ion affect the la complexes?	ability of 2+2=4				
	(B)	Give the statement of Beer's Law. What are its limitations?	1+3=4				
		Distinguish between ascending and descending paper chromatography.	4				
		OR					
3.	(P)	Discuss S _N ² mechanism in octahedral complexes.	4				
	(Q)	Explain the following terms:					
		(i) λ_{max}					
		(ii) Calibration curve.	2+2				
	(R)	Illustrate the principle of differential migration of ions in paper chromatography.	4				
		UNIT—II					
4.	(A)	What are metal carbonyls? Explain the V.B. structure of Cr(CO) ₆ .	4				
-	(B)	Give the applications of silicone polymers.	4				
	(C)	Explain the role of Mg ² ions in metabolic activity.	4				
		OR					
5.	(P)	Give evidences in support of multiple nature of M–C bond in metal carbonyls.					
		Explain the structure of (PNCl ₂) ₃ .	4				
	(R)	What is the role of Hemoglobin in oxygen transport? Explain.	4				
		UNIT—III					
6.		Explain hyperchromic and hypsochromic shifts with suitable example.					
	(B)	Describe types of vibrational modes in IR Spectroscopy.	4				
	(C)	What types of vibrational modes are expected in H ₂ O molecule? Discuss its spe	ectrum. 4				
		OR	4				
7	(P)	What type of electronic transitions are possible for the following:					
, .	(1)	(i) CH,CH,Cl					
		(ii) CH_3C-H					
		(iii) CH ₃ - CH ₃					
		(iv) $CH_3 - NH_2$	4				
	(Q)	Differentiate between following pairs on the basis of IR Spectroscopy:					
		(i) CH ₃ CH ₂ Br and CH ₃ CH ₂ OH					
		(ii) CH ₃ COCH ₃ and CH ₃ CONH ₂	4				
	(R)	Define:					
		(i) Chromophore					
		(ii) Bathochromic shift.	4				

2

UNIT-IV

- 8. (A) Explain the terms:
 - (i) Spin-Spin splitting
 - (ii) Equivalent and nonequivalent protons.

4

(B) Describe mass spectrum of neopentane.

4

- (C) How many signals are observed in NMR spectrum of the following molecules under low resolution:
 - (i) CH, O CH, CH,

(ii) NH,

4

OR

- 9. (P) Explain the terms:
 - (i) Metastable peak
 - (ii) Coupling constant (J-Value)

4

- (Q) Calculate m/e values for the following ions:
 - (i) $[C_6H_4]$.
 - (ii) [CH,COOH].[↑]

4

- (R) Differentiate the following pairs on the basis of NMR:
 - (i) CH₃CHO and CH₃CH₂COOH
 - (ii) CH₃CH₂NH₂ and CH₃CONH₂

4

UNIT-V

- 10. (A) Define the following:
 - (i) Atomic Orbital
 - (ii) Threshold frequency.

 $2 \times 2 = 4$

(B) State and explain compton effect.

(C) Derive deBroglie's equation.

4

OR

11. (P) For one dimensional box derive the equation $En = \frac{n^2 - h^2}{8ma^2}$.

(Q) Explain Planck's quantum theory.

4

4

(R) A particle having wavelength 6.6×10^{-6} m is moving with velocity 10^4 ms⁻¹. Find the mass of the particle. (h = 6.626×10^{-34} Js)

WPZ---3383

3

(Contd.)

UNIT--VI

12.	(A)	Explain how the pH is determined by using Quinhydrone electrode.			
	(B)	Define:			
		(i) Magic number			
		(ii) Nuclear force.	2×2=4		
	(C)	Explain fission yield and fission yield curve.	4		
		OR			
13.	(P)	Give the application of radioactive isotopes in (i) Agriculture (ii) Medicine.	2×2=4		
	(Q)	How pH of solution is determined by glass electrode?	4		
	(R)	Explain the Nuclear force on the basis of Mesons theory	Δ		