AR - 608

Sixth Semester B. Sc. (Part-III) Examination (Old)

6S CHEMISTRY

P. Pages: 8

Time: Three Hours]	1 .	[Max.	Marks	:	80
--------------------	-----	-------	-------	---	----

- **Note**: (1) All questions are compulsory.
 - (2) Question No. 1 carries 8 marks while each of the remaining questions carry 12 marks.
 - Draw diagram and write equations wherever necessary.
 - (4) Use of Scientific calculator is allowed.

1. (A) Fill in the blanks :--

- (i) The technique of separation of components between two phases out of which one is a stationary and other is a mobile phase is called ———.
- (iii) The reactions which are induced by the absorption of light are known as ——.

AR-608 P.T.O.

(iv)	The	branch	of	chemis	stry	which	dea	ıls
	with	chemic	al c	hanges	and	electric	city	is
	calle	d						2

- (B) Select the correct alternative:
 - (i) The 'heme' group in haemoglobin consists of the following ion co-ordinated with porphyrin ligand.
 - (a) Fe^{2+} (b) Mg^{2+}
 - (c) Fe^{3+} (d) Cr^{3+} .
 - (ii) The band in UV-Visible spectrum which is formed due to n→π* transition in carbonyl group of aldehydes and ketones is called
 - (a) K-band (b) B-band
 - (c) E-band (d) R-band.
 - (iii) When an alpha (α) particle is released in nuclear decay, the mass of the nucleus undergoing decay
 - (a) remains the same.
 - (b) decreases by four.
 - (c) decreases by two.
 - (d) increases by two.

www.sgbauonline.com

		(iv) For a reaction that obeys Stark Einstein law the quantum yield is	1
		(a) Less than one.	
		(b) One.	
		(c) Greater than one.	
		(d) None of these.	į
	(C)	Answer in one sentence :	
		(i) Define Rf value.	
		(ii) What are Metal Carbonyls?	
		(iii) What is coupling constant?	
		(iv) Define molar extinction coefficient. 4	-
		UNIT I	
2.	(A)	Explain SN ² - associative mechanism in octahedral complexes. 4	
	(B)	Draw the block diagram of spectrophotometer and describe its components.	
	(C)	Explain the principle of differential migration.	
AR-	-608	3 P.T.O	

2.

OR

3.	(P)	Define labile and inert complexes with	one
		example of each.	4

- (Q) Describe the technique of ascending paper chromatography.
- (R) How will you differentiate between a colorimeter and a spectrophotometer? 4

UNIT II

- 4. (A) What are phosphonitrillic halides? Give their applications.
 - (B) Explain the role of haemoglobin and myoglobin in oxygen transport process. 4
 - (C) Give the evidence in favour of multiple nature of M-C (metal-carbon) bond in metal carbonyls.

OR

- 5. (P) What is EAN (Effective Atomic Number) rule? How is it used to explain the formation of Ni(CO)₄ and Fe(CO)₅.
 - (Q) What are essential elements? Give their classification with examples.

(R)	What	are	silicones	?	Give	their	uses.	4
-----	------	-----	-----------	---	------	-------	-------	---

UNIT III

6.	(A)	Explain with e	xamples the	$\pi {\longrightarrow} \pi^*$ and	n-π*
		transitions in U	JV-Visible s	pectroscopy.	4

- (B) Describe different types of bending vibrations in IR spectroscopy.
- (C) Explain the process of purification of an organic compound by crystallisation. 4

OR

7. (P) What do you mean by bathochromic and hypsochromic shifts in UV-Visible spectroscopy? Explain each with example.

4

- (Q) How will you distinguish between the following pairs of compounds by IR spectroscopy?
 - (i) CH₃-CH₂-OH and CH₃-O-CH₃
 - (ii) CH₃COCH₃ and CH₃COOH 4
- (R) Describe the process of sublimation for purifying an organic substance.

AR-608 5 P.T.O.

UNIT IV

8.	(A)	Define with example the equivalent and no	m
		equivalent protons in NMR spectroscopy.	4

(B) Describe the principle of mass spectroscopy.

(C) In Kjeldahl's method 0,35 g of an organic

compound was digested with conc. H₂SO₄ and then distilled with KOH. The ammonia gas evolved was absorbed in 50 ml of 0.2 N acid. The excess acid required 18.4 ml of 0.1 N alkali. Find out the percentage of nitrogen in the compound,

OR

- (P) Explain with example the phenomenon of 'splitting of signal' in NMR spectroscopy.
 - (Q) Explain the following terms
 - (a) Metastable peak.
 - (b) Molecular ion peak.

(R) On analysis an organic compound was found to contain 10.06 percent carbon, 0.84 percent hydrogen and 89.10 percent chlorine. Calculate its empirical formula.

4

UNIT V

10.	(A)	Differentiate	between	thermal	and
		photochemical	reactions.		4

- (B) What is quantum yield? What are the reasons for high quantum yield?
- (C) A 10³ molar solution of a compound transmits 20% of the radiation in a container with path length equal to 1 cm. Calculate the molar extinction coefficient of the compound.

4

OR

- 11. (P) What is bioluminescence? Explain with examples.
 - (Q) What are chemical actinometers? Discuss uranyl oxalate actinometer. 4
 - (R) Calculate the energy associated with one photon and also one Einstein of radiation of wave length 360 nm. (Given h = 6.62 x 10³⁴ J sec, C = 3 x 10⁸ m sec⁻¹, N = 6.02 x 10²³).

UNIT VI

(A) What are potentiometric titrations? Give their advantages.

AR-608 . 7 P.T.O.

- (B) Give the similarities between atomic nucleus and liquid drop.
- (C) Calculate the Q value of the following nuclear reaction:

$$^{27}_{13}\text{Al} + ^{4}_{2}\text{He} \longrightarrow ^{30}_{14}\text{Si} + ^{1}_{1}\text{H} + \text{Q}$$

(Given
$${}^{27}_{13}$$
Al = 26.9815 amu, ${}^{4}_{2}$ He = ${}^{4.0026}_{13}$ amu ${}^{30}_{14}$ Si = 29.9738 amu and ${}^{1}_{1}$ H = 1.0078 amu, 1 amu = 931.5 Mev)

State whether the reaction is endoergic or exoergic.

- (P) What is fission yield? Explain fission yield curve.
 - (Q) How is pH of a solution determined by using glass electrode? Give the advantages of this electrode.
 - (R) Complete the following nuclear reactions:

(i)
$${}^{24}_{12}\text{Mg} + {}^{1}_{0}\text{n} \longrightarrow {}^{24}_{11}\text{Na} + ?$$

(ii)
$${}^{12}_{6}$$
C + ${}^{2}_{1}$ H \longrightarrow ? + ${}^{1}_{0}$ n.

