B.Sc. (Part—III) Semester—VI Examination MATHEMATICS—XII Graph Theory (Optional)

Time-	-Three	Hours]	[Maximum Marks60				
Note:	:(1)	Question one is cat once only.	ompulsory and attempt it				
	(2)	Solve one question	n from each unit.				
1. C	choose 1	he correct alternat	ive in the following:				
(i	i) Agı	A graph in which all vertices are of equal degree					
	is c	alled as	•				
	(a)	simple graph	•				
	(b)	connected graph					
	(c)	regular graph					
	(d)	complete graph					
(ii) An	An open walk in which no vertex appears more					
	thar	once is	<u>.</u>				
	(a)	a path					
	(b)	a circuit .	•				
	(c)	disconnected grap	oh .				
	(d)	none of these	•				
UBS-	-4 8 913(R	e) 1	(Contd.)				

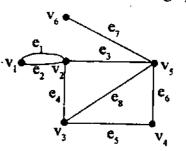
(iii)	A	free	with	n	vertices	hac	odese
(111)	~	ucc	MILL	и	vertices	nas	edges.

- (a) 1 n
- (b) n
- (c) n-1
- (d) n + 1

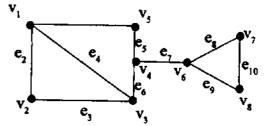
(iv) There are ____ labelled trees with n vertices $(n \ge 2)$.

- (a) 2n
- (b) 2n + 1
- (c) n^{n-2}
- (d) $(n-2)^n$

(v) Number of edges in the smallest cut set of a connected graph is called as _____.


- (a) separability
- (b) vertex connectivity
- (c) edge connectivity
- (d) none

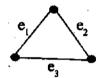
(vi) Sum of degree of regions of plane graph is equal


to _____

- (a) 2n
- (b) no. of vertices
- (c) twice the number of edges
- (d) none of these

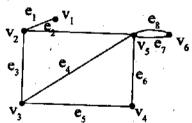
11. (p) Find the cutset matrix of graph G.

(q) Find circuit matrix of the graph.



5

(q) Prove that a planar graph with n vertices and e edges has e - n + 2 number of regions. 5


UNIT-IV

- (a) Prove that the set W_r of all circuit vectors including zero vector in W_G forms a subspace of W_G.
 - (b) Prove that the circuit subspace W_r and the cutset subspace W_s are orthogonal to each other in a vector space of a graph.
- (p) Prove that the set W_s of all cutset vectors including zero vector in W_G forms a subspace of W_G.
 - (q) For a graph G with spanning tree $T = \{e_1, e_2\}$ find $W_G, W_S, W_\Gamma, W_\Gamma \cap W_S, W_\Gamma \cup W_S$.

UNIT-V

10. (a) Define Incidence matrix and find it for the graph

(b) Prove that if A(G) is an incidence matrix of a graph G with n vertices then rank of A(G) is (n-1).

UBS-48913(Re) 6 (Contd.)

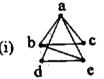
(vii) Minimum number of linearly independent vectors that spans the vectors in a vector space W _G is called
(a) dimension of vector space
(b) basis of vector space
(c) subspace
(d) subgraphs
(viii) The dimension of the cutset subspace W _s is equal to the
(a) degree of vertices
(b) no. of edges
(c) rank of the graph
(d) nullity of the graph
(ix) A row with all zeros in incidence matrix represents
(a) pendent vertex
(b) isolated vertex
(c) even vertex
(d) odd vertex
(x) In a path matrix there is no row with all
(a) ones
(b) zeros
(c) vertices
(d) edges 10×1=10

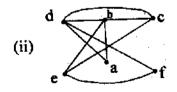
UBS-48913(Re)

(Contd.)

UNIT-I

- (a) Define degree of a vertex in a graph and show that sum of degrees of all vertices in a graph is twice the number of edges.
 - (b) Prove that a graph G is disconnected if and only if its vertex set V can be partitioned into two non empty disjoint subsets V₁ and V₂ such that there exist no edge in G whose one end vertex is in subset V₁ and another in V₂.
- 3. (p) Prove that a simple graph with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.
 - (q) Prove that given connected graph G is an Euler graph if and only if all vertices of G are of even degree.


UNIT--II


- 4. (a) Prove that every tree has either one or two centers.
 - (b) Prove that a graph is a tree if and only if it is minimally connected.

- 5. (p) Prove that following statements are equivalent:
 - (i) There is exactly one path between every pairs of vertices in G.
 - (ii) G is minimally connected graph. 5
 - (q) Prove that a tree with n vertices has n-1 number of edges.

UNIT-III

- 6. (a) Prove that every circuit has even number of edges in common with the cutset.
 - (b) Define edge connectivity and vertex connectivity and show that the vertex connectivity of any graph can never exceed the edge connectivity. 5
- 7. (p) Show that following graphs are planar by redrawing it so that there is no edge cross:

5

UBS-48913(Re)

5

(Contd.)