B.Sc. (Part—III) Semester—VI Examination MATHEMATICS

Paper—XII

(Graph Theory)									
Time: 7	hree	[Maximum Marks: 60							
N.B. :-	(1) (2)								
1. Choose the correct alternative :									
(i)	A g	raph G = < V, E > is said to be	a nu	ll graph if					
	(a)	$V \cap E = \phi$	(b)	$V \cup E = \phi$					
	(c)	$V = \phi$	(d)	$E = \phi$	1				
(ii) A graph in which all vertices are of equal degree is called									
	(a)	planar graph	(b)	complete graph					
	(c)	simple graph	(d)	regular graph	1				
(iii) The length of the longest path in a tree is called its									
	(a)	centre	(b)	radius	:				
	(c)	diameter	(d)	walk	1				
(iv)	<u> </u>								
	(a)	n^{n-2}	(b)	n^2					
	(c)	n^{n-1}	(d)	n^{n+1}	1				
(v)	A c	omplete graph of five vertices is	ed as:						
	(a)	planar graph	(b)	non-planar graph					
	(c)	vertex graph	(d)	biparticle graph	1				
(vi) A connected graph G is a tree iff adding an edge between any two vertices in G									
	exa	ctly							
	(a)	one circuit	(b)	two circuits					
	(c)	three circuits	(d)	many circuits	1				
VTM14200 .			1		(Contd.)				

www.sgbauonline.com

(vii) Subspaces V	W_n and W_n	are said to l	be orthogonal	complements iff	

- (a) dim $(W_{\Gamma} \cup W_{S}) = 0$ (b) dim $(W_{\Gamma} \cap W_{S}) = 0$
- (c) $\dim (W_r \cup W_s) = 1$ (d) $\dim (W_r \cap W_s) = 1$

(viii) In a cutset matrix C(G) a column with all zeros corresponds to an edge forming

(a) a tree

(b) a binary tree

(c) a loop

(d) the parallel edges

(ix) If B(G) is a circuit matrix in a connected graph G with n vertices and e edges, then rank of B(G) =_____.

(a) e - n + 1

(b) e - n + 1

(c) n-1

(d) n + 1

1

1

1

- (x) If no vertex appears more than once in an edge sequence then it is called as
 - (a) a circuit

(b) a cutset

(c) a walk

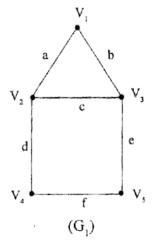
(d) a path

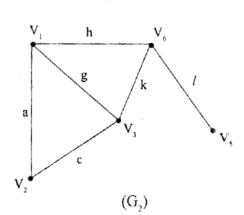
1

UNIT-I

(a) A connected graph G is an Euler graph iff every vertex of G is an even degree, prove this.

(b) Define union and intersection of two graphs G₁ and G₂. From the following figures find: (i) $G_1 \cup G_2$ (ii) $G_1 \cap G_2$ (iii) $G_1 \oplus G_2$.





5

VTM-14200

2

(Contd.)

- 3. (p) Define complete graph. Draw complete graph of four and five vertices. Also prove that the number of vertices of odd degree in a graph is always even.
 - (q) Define graph and draw the graphs of the following chemical compounds:
 - (i) CH,

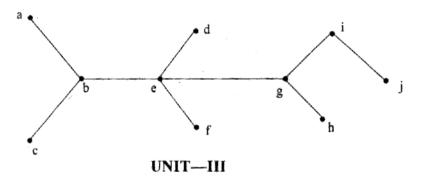
(ii) C₂H₆

(iii) C,H,

(iv) N_2O_3

UNIT—II

- 4. (a) Define tree. If G is a graph with n vertices then prove that following statements are equivalent:
 - (i) G is a tree.
 - (ii) G is connected and has n − 1 edges.
 - (b) Prove that in any tree with two or more vertices there are at least two pendant vertices.
- 5. (p) Prove that a graph T is a tree if and only if there is only one path between every pair of vertices in T.
 - (q) Redraw the tree given below as Rooted tree with b as a root. What is the height of resulting tree? Find Centre(s), radius and diameter of tree.



- (a) Define the region and prove that if G is a planar graph with n vertices, e edges and f regions then n e + f = 2.
 - (b) Prove that ring sum of any two cut-sets in a graph is either a third cut-set or an edge disjoint union of cut-sets.

VTM-14200

3

(Contd.)

5

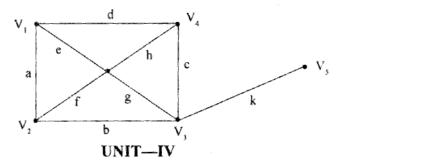
5

5

- 7. (p) Define :--
 - (i) Fundamental circuit
 - (ii) Fundamental cut set.

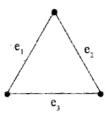
Prove that with respect to a given spanning tree T, a branch b_i that determines a fundamental cut set S is contained in every fundamental circuit associated with the chords in S and in no others.

(q) Define a cut set. List all the cut sets in the following graph:

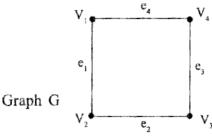


5

- 8. (a) In the vector space of a graph prove that the circuit subspace and the cut-set subspace are orthogonal to each other.
 - (b) For the given graph G, find IN_G , W_S , W_Γ , $W_S \cap W_\Gamma$ are $W_S \cup W_{\Gamma}$.



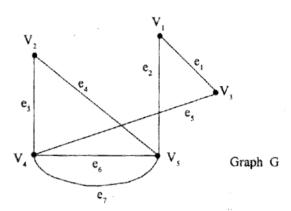
- (p) Prove that the set W_s of all cut-set vectors including zero vector in W_G form a subspace of W_G.
 - (q) Let G be a graph given as in figure. Find W_{Γ} , W_{S} , $W_{\Gamma} \cap W_{S}$ and $W_{\Gamma} \cup W_{S}$, where W_{Γ} is a circuit subspace and W_{S} is a cut-set subspace.



VTM-14200 4 (Contd.)

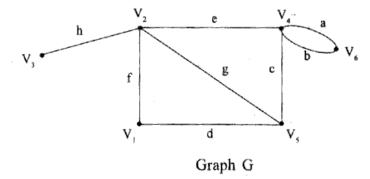
UNIT-V

10. (a) Find Incidence matrix A(G) and the Adjacency matrix of the following graph G.



5

- (b) If A(G) is an incidence matrix of connected graph G with n vertices then prove that rank of A(G) is (n − 1). 5
- 11. (p) Let A and B be respectively, the incidence matrix and the circuit matrix of a loop free graph whose columns are arranged using the same order of edges. Then show that every row of A is orthogonal to every row of B, i.e. $AB^T = 0$, $B \cdot A^T = 0 \pmod{2}$.
 - (q) Define circuit matrix. Find the circuit matrix of the following graph G.



5

www.sgbauonline.com