B.Sc. (Part-III) Semester-VI Examination

MATHEMATICS

Graph Theory (Optional)

	Pape	er—XII	
Time: T	Three Hours]	[Maximum Marks:	60
Note :-	-(1) Question No. 1 is compulsory a (2) Solve ONE question from each		
	be:	wo distinct vertices are adjacent then it is said	to 1
	(a) Connected graph(c) Null graph	(b) Regular graph (d) Complete graph	
(2)	The vertex with zero degree is calle (a) Even vertex (c) Pendant vertex		1
(3)	 There are ηⁿ⁻² labelled tree's with n (a) Euler formula (c) Hamiltonian formula 	vertices (n ≥ 2). This is defined by : (b) Cayley formula (d) Kuratowski formula	Ì
(4)	In any tree with one or more vertice (a) One pendant vertex (c) Two pendant vertices	(b) One isolated vertex (d) Two isolated vertices	1
(5)	A connected graph is said to be september (a) 1 (c) 3	reparable if its vertex connectivity is: (b) 2 (d) 4	1
(6)	A graph can be embedded in the sur (a) a circle (c) a sphere	rface of a sphere iff it can be embedded in: (b) a straight line (d) a plane	1
UNW- 24	775	1 (Conto	d.)

www.sgbauonline.com

(7)	Minimum	number	of	linearly	independent	vectors	that	spans	the	vectors	in	a	vector
	space W_	is called	:										1

(a) Subspace

(b) Dimension of vector space

(c) Subgraphs

- (d) Basis of vector space
- (8) A row with a single unit entry in incidence matrix corresponds to:
 - (a) a isolated vertex

(b) an internal vertex

(c) a pendant vertex

- (d) none of these
- (9) If B is a circuit matrix of a connected graph G with n vertices and e edges then rank of B is:
 - (a) e + n 1

(b) e - n - 1

(c) e + n + 1

- (d) e n + 1
- (10) The number of pendant vertices in binary tree with 15 vertices are:
 - (a) 7

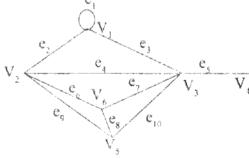
(b) 8

(c) 9

(d) 10

UNIT-I

- 2. (a) Define degree of a vertex. Prove that in a simple graph there are even number of odd degree vertices.
 - (b) Define a graph. Prove that a simple graph with n vertices and k-component can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.
- 3. (p) From the graph given below answer the following:



- (i) Write the adjacent vertices of V₆.
- (ii) Which edges are incident with the vertex V, ?
- (iii) Write the degree of each vertex.
- (iv) Is the graph simple? Why?

1+1+1+2

1

1

UNW--- 24775

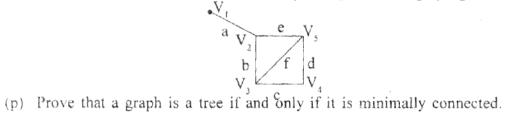
2

(Contd.)

(q) Prove that a connected graph G is an Euler graph if and only if it can be decomposed into circuits 5

UNIT-II

- (a) Prove that in any tree with two or more vertices there are atleast two pendant vertices. 5
 - (b) Define spanning tree. Sketch all the spanning tree of a graph given below.



- 5
 - (q) Define centre of a tree and show that every tree has either one or two centres. 5

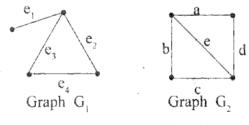
UNIT-III

- (a) Prove that a connected planar graph with n vertices and e edges has e n + 2 region. 6.
 - (b) Define vertex connectivity and edge connectivity of connected graph. What is the vertex connectivity and edge connectivity of the following graph?

Draw a graph with same number of vertices and edges of above graph so that vertex connectivity and edge connectivity should be maximum. 1+1+1+1+1

5

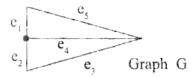
- (p) Show that the complete graph with five vertices is non-planar.
 - (q) Define cut-set of a graph. Find all cut-set of the following graphs. 1+2+2



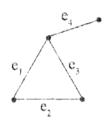
UNIT-IV

(a) Prove that the circuit subspace W_{Γ} and the cut-set subspace W_{ς} are orthogonal to each 5 other in vector space of a graph.

UNW - 24775 3 (Contd.) (b) Find all circuits and cutsets of the graph G given below and calculate W_Γ and W_S and their dimensions.

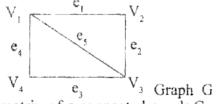


- 9. (p) Prove that W_s of all cut-set vectors including zero vector, in W_g forms a subspace of $W_{G'}$
 - (q) For the following graph, find $W_{\Gamma} \cup W_{S}$ and $W_{\Gamma} \cap W_{S}$ of spanning tree $T = \{e_1, e_2, e_4\}$.

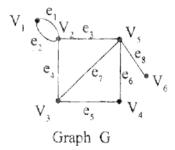


UNIT--V

- 10. (a) The reduced incedence matrix of a graph is non-singular iff the graph is tree. 5
 - (b) For the following G find A(G), B(G) and prove that $AB^T = zero matrix$. 2+2+1



- 11. (p) If A(G) is an incidence matrix of a connected graph G with n vertices then prove that the rank of A(A) is n 1.
 - (q) Define cut-set matrix. Find the cut-set matrix of the graph G. 1+4



UNW 24775