B.Sc. Part-III (Semester-VI) Examination MATHEMATICS (New)

Paper—XII

Graph Theory (Optional)

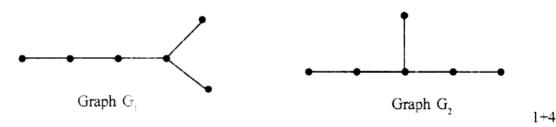
Time	e : T	hree	Hours]		[Maximum Marks : 60)	
Note	:	(1)	Question No. 1 is compulsor	y and	d attempt it at once only.		
		(2)	Solve ONE question from ea	ich u	ınit.		
1.	Choose the		he correct alternatives in the f	ollov	wing :— 1 mark each	1	
	(1)	The	The number of vertices of odd degree in a graph is always				
		(a)	odd	(b)	even		
		(c)	even and odd	(d)	none of these		
	(2)	For	any graph G with e edges and r	ı vert	tices sum of degree of all vertices is equal to		
		(a)	2e	(b)	e – 2		
		(c)	e + 1	(d)	e – 1		
	(3)	An	edge which is in a spanning to	ree T	is called as		
		(a)	branch	(b)	chord		
		(c)	cutset	(d)	circuit		
	(4)	The	total number of pendant verti	ces i	n a binary tree with n vertices are		
		(a)	n - 1	(b)	n + 1		
		(c)	$\frac{n-1}{2}$	(d)	$\frac{n+1}{2}$		
	(5)	Nun	nber of edges in the smallest of	cutset	et of a connected graph is called as		
		(a)	vertex connectivity	(b)	edge connectivity		
		(c)	separability	(d)	none of these		
	(6)	Eve	ry cut-set in a non separable gra	aph v	with more than two vertices contains at least	٠.	
		(a)	one edge	(b)	two edges		
		(c)	three edges	(d)	none of these		
	(7)		circuit subsapce W_{Γ} and the	e cut	tset subspace W _s in the vector space of a graph	n	
		(a)	orthogonal to each other				
		(b)	parallel to each other				
		(c)	not orthogonal to each other				
		(d)	not parallel to each other				
WPZ-3380					i (Contd.	.)	

- (8) The dimension of the cutset subsapce W_s is equal to the _____.
 - (a) degree of vertices
- (b) no. of edges
- (c) rank of the graph
- (d) nullity of the graph
- (9) If A(G) is an incidence matrix of a connected graph G with n vertices then rank of A(G) is .
 - (a) $\frac{n+1}{2}$

(b) $\frac{n-1}{2}$

(c) n + 1

- $(d) \quad n-1$
- (10) In a path matrix there is no row with all
 - (a) zeros


(b) ones

(c) vertices

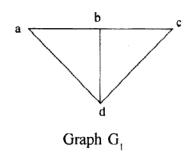
(d) edges

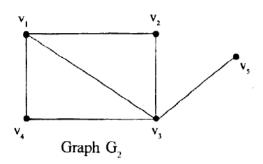
UNIT---I

- 2. (a) Define a simple graphs and show that maximum number of edges in a simple graph with n vertices are $\frac{n(n-1)}{2}$.
 - (b) When two graph are said to be isomorphic? Whether the following graphs are isomorphic or not? Explain.

- (p) Prove that a connected graph G is an Euler graph if and only if it can be decomposed into circuits.
 - (q) Define degree of a vertex. Show that in a connected graph there are even number of odd degree vertices.

UNIT---II


- 4. (a) Define centre of a tree and show that every tree has either one or two centres.
 - (b) Define binary tree and rooted tree. Show that there are $\frac{n+1}{2}$ pendant vertices in a binary tree with n vertices.

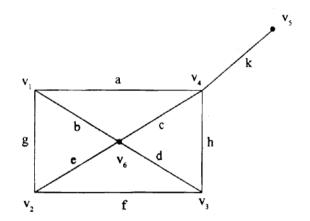

WPZ-3380

2

(Contd.)

5. (p) Sketch all spanning trees of the following graphs G_1 and G_2 .

5

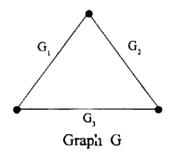

(q) Define distance between two vertices in connected graph. Prove that the distance between two vertices in connected graph is a metric.

UNIT-III

6. (a) Prove that the complete graph of five vertices is nonplanar.

5

- (b) Prove that if G is a planar connected graph with n vertices, e edges and f faces (region) then n e + f = 2.
- 7. (p) Define cutset. List all the cutsets in the following graph.

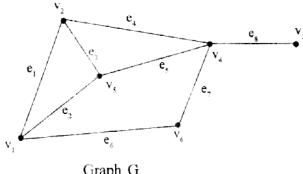


2+3

(q) Prove that every cutset in a connected graph G must contain at least one branch of every spanning tree of a graph G.
5

UNIT-IV

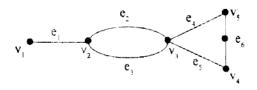
- 8. (a) Prove that the set W_{Γ} of all circuit vectors including zero vector in W_{G} forms a subspace of W_{G} .
 - (b) For the graph G find $W_{_G}$, $W_{_S}$, $W_{_\Gamma}$, $W_{_S} \cap W_{_\Gamma}$ and $W_{_S} \cup W_{_\Gamma}$.


5

WPZ—3380 3 (Contd.)

- (p) Prove that the set of circuit vector corresponding to the set of fundamental circuits, with 9. respect to any spanning tree, forms a basis for the circuit subsapce W_r.
 - (q) Prove that the dimension of the cutset subspace W_s is equal to the rank r of the graph and the number of cutset vectors (including o) in W_s is 2^t . 5

UNIT---V


10. (a) Define adjacency matrix. Find the adjacency matrix of the graph G.

Graph G

- (b) If B is a circuit matrix of a connected graph G with e edges and n vertices then prove that rank of B = e - n + 1.5
- 11. (p) Prove that the reduced incidence matrix of a graph is nonsingular iff the graph is a tree.

(q) Find incidence matrix A(G) and cut set matrix C(G) for the graph G.

Graph G

5

5

5