B.Sc. (Part-III) Semester-VI Examination

MATHEMATICS (New)

(Linear Algebra)

Paper—XI

			211	
Time: Three		Hours]		[Maximum Marks: 60
Note :		Question No. 1 is compulsory a Attempt ONE question from ea		ot it once only.
1. Cho	ose t	the correct alternatives :		10
(i)	The	basis {(1, 0, 0), (0, 1, 0), (0, 0,	1)} of th	ne vector space R3(R) is known as:
	(a)	Normal basis	(b)	Quotient basis
	(c)	Standard basis	(d)	None of these
(ii)	The	vectors (a, b) and (c, a) are L.D.	iff:	
	(a)	ad - bc = 0	(b)	ab - cd = 0
	(c)	cd - ab = 0	(d)	ab + dc = 0
(iii)	The	kernel of a linear transformation	n T : U -	→ V is a subset of:
	(a)	U	(b)	V
	(c)	U and V	(d)	None of these
(iv)	If W	V is a subspace of a finite dimen	sional ve	ctor space V, then dim (V/W) =
	(a)	dim V dim W	(b)	dim V - dim W
	(c)	dim V + dim W	(d)	None of these
(v)	An	element of dual space of V is ca	ılled a :	
	(a)	Linear functional	(b)	Bilinear element
	(c)	Linear element	(d)	None of these
(vi)	Ann	ihilator of W, A(W) is a subspace	ce of:	
. ,	(a)		(b)	V
	(c)		(d)	None of these
VOX358		Y	1	(Contd.)
		•	_	(==== ,

www.sgbauonline.com

	(vii)	Eve	ery set of orthogonal vectors is:				
		(a)	Linearly Independent				
		(b)	Linearly Dependent				
		(c)	Linearly Independent and Linearly	Dep	endent		
		(d)	None of these				
	(viii)	Let	W be a subspace of an IPSV then V	$V \cap W$	$V^{\perp} =$		
		(a)	{0}	(b)	{1}		
		(c)	ф	(d)	None of these		
	(ix) R-Module homomorphism is linear transformation if :						
		(a)	R is with unit element	(b)	R is commutative		
		(c)	R is a field	(d)	None of these		
	(x)	If the ring R has a unit element 1 and $1.a = a$ for all $a \in M$, then M is called:					
		(a)	A unital R-module	(b)	Right R-module		
		(c)	Left R-module	(d)	None of these		
			UNIT-	-1			
2.	(a)	Prove that intersection of two subspaces of a vector space is again a subspace. Is this					
		stat	ement is true for union?		5		
	(b)	Let U and W are two subspaces of a vector space V and $Z = U + W$: Then show					
				ly for	any $z \in Z$ and for some $u \in U$ and		
			E W.		5		
3.	(p)	Define the Linear span of a subset of a vector space and show that Linear span L(S)					
		of a subset S of a vector space V is the smallest subspace of V containing S. 5					
	(q)	If L	J and W are finite dimensional subsp	aces (of a vector space V, then prove that:		
			$\dim(U + W) = \dim U + \dim W - d$	im (U	$J \cap W$). 5		
VOX—3582		323	2		(Contd.)		

UNIT-II

4. (a) Let $T: U \to V$ be a linear transformation. Then prove that :

T is one-one \Leftrightarrow N(T) is zero subspace of U.

5

5

5

5

(b) Let $T: V_3 \to V_3$ defined by:

$$T(x_1, x_2, x_3) = (x_1 + x_2, x_2 + x_3, x_3 - 2x_1)$$

Find range, kernel, rank, nullity and verify rank-nullity theorem.

5. (p) State and prove Rank-Nullity theorem.

_

(q) Find the transformation T(x, y, z). If T is a linear map and matrix of T with respect to

the bases
$$B_1$$
 and B_2 is $\begin{bmatrix} -1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$, where

$$B_1 = \{(1, 2, 0), (0, -1, 0), (1, -1, 1)\}$$
 and

$$B_2 = \{(1, 0), (2, -1)\}.$$

UNIT-III

- (a) Let U, V are finite dimensional complex vector spaces and A: U → V, B: U → V be linear maps, α ∈ C, then prove that:
 - (i) $(A + B)^* = A^* + B^*$

(ii)
$$(\alpha A)^* = \overline{\alpha} A^*$$

- (b) Prove that the element $\lambda \in f$ is a characteristic root of $T \in L(V)$ iff for some non zero $v \in V$, $Tv = \lambda v$. Also define characteristic root and characteristic vector. 3+1+1
- 7. (p) If V is a finite dimensional vector space over F, then prove that $V \approx \hat{V}$.
 - (q) If W is a subspace of finite dimensional vector space V, then prove that A(A(W)) = W.

UNIT-IV

- 8. (a) Define inner product space and prove that in an inner product space V:
 - (i) $\parallel \alpha \cdot u \parallel = \mid \alpha \mid \cdot \parallel u \parallel$
 - (ii) $\| u + v \| \le \| u \| + \| v \|$, $\alpha \in F$ and $u, v \in V$.
 - (b) Using Gram-Schmidt process orthonormalise the set of vectors $\{(1, 0, 1, 0), (1, 1, 3, 0), (0, 2, 0, 1)\}$ of V_4 .

www.sgbauonline.com

9. (p) Prove that if $\{W_1, W_2,, W_m\}$ is an orthonormal set in V, then $\sum_{i=1}^{m} |(w_i, v)|^2 \le ||v||^2$

for any $v \in V$.

(q) Prove that every finite dimensional inner product space has an orthogonal basis.

UNIT---V

- 10. (a) Define Homomorphism of Modules and prove that if T is a homomorphism of an R-module M to an R-Module H, then:
 - (i) T(0) = 0
 - (ii) $T(-m) = -T(m) \forall m \in M$
 - (iii) $T(m_1 m_2) = T(m_1) T(m_2) + m_1 m_2 \in M.$ 1+4
 - (b) Prove that every abelian group G is a module over a ring of integers Z. 5
- 11. (p) Define the sub module and prove that an arbitrary intersection of sub modules of a module is a submodule.
 - (q) Define direct sum of submodules and prove that if M_1 and M_2 are sub modules of R-module M. then $M_1 + M_2$ is a submodule of M.