B.Sc. (Part-III) Semester-VI Examination MATHEMATICS (Old) (Upto Winter 2018) (Linear Algebra)

Paper—XI								
Time: Three Hours]			[Maximum Marks: 60					
Note:—(1) Question No. 1 is compulsory and attempt this question once only. (2) Attempt ONE question from each unit.								
1. (i)	Let U and W be two distinct subspaces of an n-dimensional vector space V and dim $U = \dim W = n - 1$. Then the dim $(U \cap W)$ is:							
	(a) n - 2	(b)	n .					
	(c) n - 4	(d)	n-3					
(ii)	(ii) The basis $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ of the vector space $R^3(R)$ is known as							
	(a) Quotient basis	(b)	Normal basis					
	(c) Standard basis	(d)	None of these					
(iii)	$\{T(u) \mid u \in U\} = \dots$		1					
	(a) Ker(T)	(b)	R(T)					
	(c) R(u)	(d)	None of these					
(iv) If U, V be finite dimensional vector space and $T: U \rightarrow V$ be a linear, on								
	map then :		1					
	(a) dim U = dim V	(b)	$dim~U \neq dim~V$					
	(c) U = V	(d)	$U \neq V$					
(v) Let U and V be complex vector spaces. If $A:U\to V$ be a linear map, then								
	A i.e. A* is a linear map	:	. 1					
	(a) From Û to Ŷ	(b)	From \hat{V} to \hat{U}					
	(c) From U to V	(d)	From V to U					
VOX35	20	1	(Contd.)					

(7	vi)	lf U	I and W are subspaces of V over F th	nen l	J ⊆ W ⇒	1	
		(a)	A(U) = A(W)	(b)	$A(W)\subseteq A(U)$		
	((c)	$A(U) \approx A(W)$	(d)	$A(U) \supseteq A(W)$		
(1	vii)	An element of dual space of V is called a:				1	
	+	(a)	Linear functional	(b)	Linear element		
	+	(c)	Bilinear element	(d)	None of these		
(7	viii)	If V	V is a subspace of an inner product sp	ace \	V and W- is orthogonal complement	of	
		W t	hen:			1	
	+	(a)	$W \cap W^{\perp} \neq \{0\}$	(b)	$\mathbf{W} \cap \mathbf{W}^{\mathrm{L}} = \{0\}$		
		(c)	W^{\perp} is a subset of W	(d)	None of these		
(i	-		ing R has a unit element 1 and 1.a ed :	= a,	for all $a \in M$, then R-module M	is 1	
	-	(a)	Unique R-module	(b)	Unital R-module		
		(c)	Left R-module	(d)	None of these		
(2	x)	Let $T:M\to H$ be a homomorphism of a R-module M into R-module H, then : 1					
		(a)	R(T) is a submodule of M	(b)	R(T) is a submodule of H		
		(c)	R(T) is a subset of M	(d)	None of these		
			UNIT-	-I			
2. (a	a) .	If V is a vector space over F, then prove that :					
		(i)	$\alpha \ 0 - 0 \ \forall \ \alpha \in F$				
		(ii)	$0 v = 0 \forall v \in V$				
		(iii)	$(-\alpha) \ v = -(\alpha v) \ \forall \ \alpha \in F, \ \forall \ v \in V$				
		(iv)	$\alpha v - 0 \Leftrightarrow \alpha = 0 \text{ or } v = 0, (\alpha \in F,$	ν ∈	V)	5	
(1	b)	Show that a non empty subset U of a vector space V over F is a subspace of V iff:					
	•	(i)	$u+v\in U\ \forall\ u,v\in U\ \text{and}$				
	((ii)	α u \in U \forall α \in F, u \in U.			5	
VOX-	-3582	20	2		(Cont	d.)	
					(- /	

3. (p) If U and W be subspaces of a vector space V₃, where :

$$U = \{(x_1, x_2, x_3) \in V_3 \mid x_3 = x_1 + x_2\}$$

$$W = \{(x_1, x_2, x_3) \in V_3 \mid x_1 = x_2 = x_3\} \text{ then}$$

show that V₃ is the direct sum of U and W.

(q) Show that the ordered set:

 $S = \{(1, 1, 2), (1, -1, 1), (1, 3, 3), (-1, 3, 0)\}$ is LD and locate one of the vectors that belongs to the span of previous one. Find also the largest LI subset whose span is equal to [S].

UNIT—II

4. (a) If T is a linear transformation from V_2 to V_2 defined by T(2, 1) = (3, 4), T(-3, 4) = (0, 5), then express (0, 1) as a LC of (2, 1) and (-3, 4).

Hence find image of (0, 1) under T.

5

5

(b) Let $T: U \rightarrow V$ be a linear map.

If T is 1 - 1 and u_1 , u_2 ,, u_n are LI vectors in U, then prove that Tu_1 , Tu_2 ,, Tu_n are LI vectors in V.

- 5. (p) Find the range, kernel and nullity for the linear map $T: V_3 \rightarrow V_3$ defined by $T(x_1, x_2, x_3) = (x_1 + x_2, x_2 + x_3, x_3 2x_1)$. Also verify Rank-nullity theorem.
 - (q) If matrix of a linear map T with respect to bases B_1 and B_2 is $\begin{bmatrix} -1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$,

where:

$$B_1 = \{(1, 2, 0), (0, -1, 0), (1, -1, 1)\}$$
 and $B_2 = \{(1, 0), (2, -1)\}$. Find $T(x, y, z)$.

UNIT—III

- 6. (a) Let V be a vector space over F. For a subset S of V, let A(S) = { f ∈ Û | f(s) = 0 ∀ s ∈ S.
 Prove that A(S) = A(L(S)), where L(S) is linear span of S.
 - (b) Define Annihilator of W = A(W).

Prove that annihilator of W = A(W) is a subspace of \hat{V} .

VOX-- 35820 (Contd.)

- 7. (p) If W_1 and W_2 are subspaces of a finite dimensional vector space V, describe $\Lambda(W_1 + W_2)$ in terms of $\Lambda(W_1)$ and $\Lambda(W_2)$.
 - (q) If S is a subset of a vector space V and $A(S) = \{ f \in \hat{V} | f(x) = 0 \forall s \in S, \text{ then prove that } A(S) = A(L(S)), \text{ where } L(S) \text{ is the linear span of S.}$

UNIT-IV

- 8. (a) Prove that W^{\perp} is a subspace of V.
 - (b) Let V be an inner product space over F. In V define the distance d(u, v) from u to v by d(u, v) = ||u v||. Prove that:

5

- (i) $d(u, v) \ge 0$ and $d(u, v) = 0 \Leftrightarrow u = v$
- (ii) d(u, v) = d(v, u)
- (iii) $d(u, v) \le d(u, w) + d(w, v) + u, v, w \in V$ 5
- 9. (p) Find the orthonormal basis of P_2 [-1, 1] starting from the basis $\{1, x, x^2\}$ using the

inner product defined by
$$(f, g) = \int_{-1}^{1} f(x) g(x) dx$$
.

(q) If $\{x_1, x_2, \dots, x_n\}$ be an orthogonal set, then prove that :

$$\| \mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_n \|^2 = \| \mathbf{x}_1 \|^2 + \| \mathbf{x}_2 \|^2 + \dots + \| \mathbf{x}_n \|^2$$
 5

UNIT--V

- 10. (a) If R be a ring and T: M \rightarrow H be an R-module homomorphism, then prove that $\frac{M}{KerT} \cong R(T).$
 - (b) Prove that every abelian group G is a module over the ring of integers Z. 5
- 11. (p) If A is a submodule of an R-module M and T is a mapping from M into M/A defined by T_m = A + m ≠ m ∈ M then prove that T is an R-homomorphism of M into M/A and Ker T = A.
 4
 - (q) If M is an R-module and $m \in M$ then prove that $\{rm \mid r \in R\}$ is a submodule of M.
 - (r) If λ is a left ideal of R and if M is an R-module, show that for $m \in M$,

$$\lambda_m = \{xm \mid x \in \lambda\}$$
 is a submodule of M.

VOX-35820 4 775