B.Sc. (Part—III) Semester—VI Examination MATHEMATICS

(Linear Algebra)

					Раро	er—XI				
lin	ne : T	hree l	lours	i]			[M	aximum Marks : 60		
	Not	te:			_		mpt this question one	e only.		
			(2)	Attempt ON	E question from	each unit	•			
1.	Choose the correct alternative:									
	(i)	If S	is non empty subset of vector sapce V, then L(S) is							
		(a) Largest subspace of V containing S.								
		(b)	(b) Smallest subspace of V containing S.							
		(c)	Sma	llest subspace	of V containing	g V.				
		(d)	Non	e of these.						
	(ii)	The basis $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ of the vector space $R^3(R)$ is as								
		(a)	Norr	mal basis		(b)	Standard basis			
		(c)	Quo	tient basis		(d)	Hamel basis			
	(iii)	400 - 1								
		(a)	dim	U = dim V		(b)	U = V			
		(c)	dim	U≠dim V		(d)	U ≠ V			
	(iv) The kernel of a linear transformation $T: U \rightarrow V$ is a subset of									
		(a)	U			(b)	\mathbf{V}			
		(c)	U ar	nd V		(d)	None of these			
	(v)	An o	eleme	ent of dual spa	ace of V is calle	ed a		1		
		(a)	Line	ar element		(b)	Bilinear element			
		(c)	Line	ar functional	-	(d)	None of these			
/TN	1—141	99				1		(Contd.)		
								,,		

www.sgbauonline.com

	(vi)	Eigen vectors corresponding to distinct eigen values of a square matrix are								
	(11)	(a)	Linearly independent							
		(b)	Linearly dependent							
		(c)								
		. /	None of these.	July (19)						
	(vii)	• /	$V \parallel = 1$, then V is called		1					
	(.2)		Normalised		Orthonormal.					
		(c)	Scalar inner product	. ,	Standard inner product.					
	(viii)	` '	n inner product space V(F), following							
	(****)	called								
			Schwrtz's inequality		Triangular law					
		. ,	Parallelogram Law	* -	Bessel's inequality					
	(ix)		-		r all a ∈ M, then M is called 1					
	. /		Unital R-module		Left R-module					
		(c)	Unique R-module	. ,	None of these					
	(x)	If M	If M is any R-module, then M and {0} are always submodules of M these are called submodules of M:							
		(a)	Proper	(b)	Improper					
		(c)	Subproper	(d)	Irreducible.					
			UNIT	I						
2.	(a)		R be the set of all positive real numb ar multiplication ⊗ as follows:	ne the operations of vector addition \oplus and						
			$\mathbf{u} \oplus \mathbf{v} = \mathbf{u}\mathbf{v}, \forall \mathbf{u}, \mathbf{v} \in \mathbf{R}^+$							
		and								
		Pro	. 5							
	(b)	Let	U and W be two subspaces of a ve	ctor spa	ace V and $Z = U + W$. Then prove that					
		$Z = U \oplus W \Leftrightarrow z = u + w$ is unique representation for any $z \in Z$ and for some $u \in U$,								
3.	(p)	Pro	Prove that the intersection of two subspaces of a vector space is again a subspace. Is this							
		state	ement true for union?		5					
VTM	- 141	99	2		(Contd.)					

2.

3.

(q) Show that the ordered set S = {(1, 1, 0), (0, 1, 1), (1, 0, -1), (1, 1, 1)} is LD and locate one of the vectors from S that belongs to the span of the previous ones. Find also the largest LI subset of S whose span is [S].

UNIT-II

4. (a) Find a linear transformation T from V₂ to V₂ s.t.

T(1, 0) = (1, 1) and T(0, 1) = (-1, 2). Prove that T maps the square with vertices (0, 0), (1, 0), (1, 1) and (0, 1) into a parallelogram.

- (b) Let $T: U \to V$ be a linear map. Then prove that R(T) is a subspace of V.
- (c) Find the range, kernel, rank and nullity of the matrix:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & -2 & 5 \end{bmatrix}$$

and verify Rauk-Nullity theorem.

5. (p) Find the matrix of the linear map $T: V_2 \rightarrow V_3$ defined by T(x, y) = (-x + 2y, y, -3x + 3y) related to the bases

$$B_1 = \{(1, 2), (-2, 1)\}$$

and $B_2 = \{(-1, 0, 2), (1, 2, 3), (1, -1, 1)\}.$

(q) State and prove Rank-Nullity theorem. 5

UNIT-III

- 6. (a) Let V be a finite dimensional vector space over F, then prove that $\mathbf{v} \approx \hat{\mathbf{v}}$.
 - (b) If W₁ and W₂ are subspaces of a finite dimensional vector space V over F, then show that

$$A(W_1 \cap W_2) = A(W_1) + A(W_2)$$
,

. 5

- (c) Prove that annihitator of W = A(W) is a subspace of \hat{V} .
- (p) Let U, V be finite dimensional complex vector spaces and A: U → V, B: U → V be linear maps of α ε C, then prove that:
 - (i) $(A + B)^* = A^* + B^*$,

(ii) $(\alpha A)^* - \overline{\alpha} A^*$.

VTM- -14199 3 (Contd.)

(q) If W is a subspace of a finite dimensional vector space V, then prove that A(A(W)) = W.5 UNIT-IV (a) Let V be a set of all continuous complex valued functions on the closed interval [0, 1]. If f(t), $g(t) \in V$, defined by $(f(t),g(t)) = \int_0^1 f(t) \cdot \overline{g}(t) dt, \text{ then } .$ show that this defines an inner product on V. 5 (b) Using Gram-Schmidt Orthogenalisation process orthonormalise the L.I. subset $\{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}\ of\ V_3.$ (p) If $\{x_1, x_2, ..., x_n\}$ be an orthogonal set, then prove that : $\| \mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_n \|^2 = \| \mathbf{x}_1 \|^2 + \| \mathbf{x}_2 \|^2 + \dots + \| \mathbf{x}_n \|^2.$ 3 (q) Prove that in an inner product space V, (i) $\|\alpha u\| = |\alpha| \|u\|$, (ii) $\| \mathbf{u} + \mathbf{v} \| \le \| \mathbf{u} \| + \| \mathbf{v} \|$. 4 (r) If V is a finite dimensional inner product space and W is a subspace of V then show that $(\mathbf{W}^{\perp})^{\perp} = \mathbf{W}.$ 3 UNIT-V (a) Prove that arbitrary intersection of submodules of a module is a submodule. 3 (b) Let M be an R-module. Then prove the following: (i) $\gamma \cdot 0 = 0$, $\forall \gamma \epsilon R$ (ii) $-(\gamma \cdot a) = \gamma \cdot (-a) = (-\gamma) \cdot a$, $\forall \gamma \in \mathbb{R}$ and $m \in M$. 4 (c) If A be a submodule of unital R-module M, then prove that M/A is also unital R-module. 11. (p) Define R-module homomorphism. If $T: M \to H$ be an R-module homomorphism, then prove that: K(T) is a submodule of M and R(T) is submodule of H. (ii) T is one-one \Leftrightarrow K(T) = {0}. 1-14 (q) Let M be an R-module. If H and K are submodules of M with $K \subset H$. Then prove that $\frac{M}{H} \approx \frac{M/K}{H/K}$.

5

925

VTM-14199

8.

9.