AT-398

B.Sc. (Part-III) Semester-VI Examination

MATHEMATICS

Linear Algebra

Paper-X1

	•		
Time: Three	Hours]		[Maximum Marks: 60
Note :(1)	Question No. 1 is compulsory and a	ttem	ot this question once only.
(2)	Attempt ONE question from each un	nit.	
1. Choose	the correct alternative :		
(1) Any	superset of a linearly dependent set	is:	1
(a)	Linearly independent		
(b)	Linearly dependent		
(c)	Linearly independent and linearly de	pend	ent
(d)	None of these		
(2) If U	J and W are the subspaces of a vector	spac	e $V(F)$ then $U \cup W$ is a subspace iff: 1
(a)	$U \subseteq W \text{ or } W \subseteq U$	(b)	$U\supseteq W \text{ or } W\supseteq U$
(c)	$U \cap W = \{0\}$	(d)	None of these
(3) If T	$T: U \to V$ be a linear map then $R(T)$	is a	subspace of:
(a)		(b)	
(c)	$U \cap V$	(d)	None of these
(4) If U	J. V be finite dimensional vector space	e and	$d T : U \to V$ be a linear one-one and onto
	then:		1
(a)	$\dim U = \dim V$	(b)	U = V
(c)	$\dim U \neq \dim V$	(d)	$U \neq V$
(5) An	element of dual space of V is called	a :	1
	Linear element		Bilinear element
(c)	Linear functional	(d)	None of these
. /			
UNW-24774	1		(Contd.)

www.sgbauonline.com

www.sgbauonline.com

(6)	Eigen vectors corresponding to distin	ct eigen	values of a square matrix are:		
	(a) Linearly independent				
	(b) Linearly dependent				
	(c) Linearly independent as well as	linearly	dependent		
	(d) None of these				
(7)	In an inner product space V, the inequal	ality (u	$(v) \le \ u \ \cdot \ v \ $, for all $u, v \in V$ is known		
	as:		1		
	(a) Triangular inequality	(b)	Cauchy-Schwartz inequality		
	(c) Bessel's inequality	(d)	None of these		
(8)	If W is a subspace of an inner produc	ct space	V and W [±] is orthogonal complement of W,		
	then:		1		
	(a) W^{\perp} is a subspace of W	(b)	$\mathbf{W} \cap \mathbf{W}^{\perp} = \{0\}$		
	$(c) W \cap W^{\perp} \neq \{0\}$	(d)	None of these		
(9)	If A is any submodule of a R-modu M/A is:	le M, th	nen the zero element of the quotient group		
	(a) M	(b)	A		
	(c) {0}	(d)	None of these		
(10)	Let $T: M \to H$ be a homomorphism	of a R-	module M into R-module H, then:		
	(a) R(T) is a subset of M		R(T) is a submodule of M		
	(c) R(T) is a submodule of H	(d)	None of these		
	UI	ITIV			
(a)	Define Linear span, It'S be a non-emi	ntv suhse	of a vector space V then prove that ISI is		
(ω)	Define Linear span. If S be a non-empty subset of a vector space V, then prove that [S] is the smallest subspace of V containing S.				
(b)	Prove that an arbitrary intersection of subspaces of a vector space is again a subspace.				
, ,	ŕ	1			
(c)	Prove that the set of functions $\{x,\}$	k } is I	I. in a real vector space of the continuous		
	functions defined on (-1, 1).		3		
(p)	If U and W are finite dimensional su	bspaces	of a vector space V, then prove that:		
	$\dim(U+W) = \dim U + \dim W$	- dim(l	$U \cap W$).		
(q)	Given two L1 vectors (1, 0, 1, 0), (0, -	1, 1, 0)	of V_4 . Find a basis of V_4 that includes these		
	two vectors.		4		
W24	774	2	(Contd.)		

2.

3.

UN

UNIT-II

- 4. (a) If T is a linear transformation of V_2 to V_2 defined by T(2, 1) = (3, 4), T(-3, 4) = (0, 5), then express (0, 1) as a LC of (2, 1) and (-3, 4). Hence find image of (0, 1) under T. 3
 - (b) Let $T: U \to V$ be a linear map. Then prove that N(T) is a subspace of U.
 - (c) Let $T: V_4 \to V_3$ be a linear map defined by : $T(e_1) = (1, 1, 1), \ T(e_2) = (1, -1, 1), \ T(e_3) = (1, 0, 0), \ T(e_4) = (1, 0, 1).$ Verify Rank-Nullity theorem.
- 5. (p) If $T: U \to V$ be a non-singular linear map, then prove that $T^{-1}: V \to U$ is also a non-singular linear map.
 - (q) If the matrix of a linear map T with respect to bases B_1 and B_2 is $\begin{bmatrix} -1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$ where $B_1 = \{(1, 2, 0), (0, -1, 0), (1, -1, 1)\}$ and $B_2 = \{(1, 0), (2, -1)\}$. Find T(x, y, z).
 - (r) Find the range, kernel, rank and nullity of a matrix $A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ and verify Rank-

Nullity theorem.

UNIT--III

- 6. (a) Let V be the finite dimensional vector space over F. Then prove that $V \approx \hat{\hat{V}}$.
 - (b) If V is finite dimensional and $V_1 \neq V_2$ are in V, prove that there is an $f \in \hat{V}$ such that $f(V_1) \neq f(V_2)$.
 - (c) Prove that A(W) is a subspace of \hat{V} .
- (p) Define Annihilator W. If V be a vector space over F for a subset S of V and A(S) = {f ∈ Û/f(s) = 0, ∀ s ∈ S}, then prove that A(S) = A(L(S)), where L(S) is linear span of S.
 - (q) If U, V are finite dimensional complex vector spaces and A: U → V, B: U → V are linear maps with α ∈ C, then prove that (A + B)* = A* + B*.
 - (r) If W_1 and W_2 are subspaces of a finite dimensional vector space V over F then describe $\Lambda(W_1 \cap W_2)$ in terms of $\Lambda(W_1)$ and $\Lambda(W_2)$.

UNW—24774 3 (Contd.)

www.sgbauonline.com

UNIT-IV

8. (a) In an IPS V over F, prove the parallelogram law:

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2).$$
 5

(b) Apply Gram-Schmidt method to orthonormalise the set :

$$\{(1, 0, 1, 1), (-1, 0, -1, 1), (0, -1, 1, 1).$$

- (p) Let W[±] be the set of orthogonal vectors in an IPS V, then prove that W[±] is a subspace of V.
 - (q) Let V be a finite dimensional inner product space. Then prove that V has an orthogonal set as a basis.
 - (r) In $F^{(n)}$ define, for $u=(\alpha_1,\ \alpha_2,\,\ \alpha_n)$ and $v=(\beta_1,\ \beta_2,\,\ \beta_n),$

$$(u,\ v) \,=\, \alpha_1 \overline{\beta}_1 + \alpha_2 \overline{\beta}_2 + \ldots + \alpha_n \overline{\beta}_n \,.$$

Show that this defines an inner product.

UNIT--V

- (a) Let T be a homomorphic of R-module M into an R-module H. Then prove that T is one-one iff Ker T = {0}.
 - (b) If M_1 and M_2 are submodules of R-module M_1 , then prove that $M_1 + M_2$ is a submodule of M. Moreover $M_1 + M_2$ is direct sum of M_1 and $M_2 \Leftrightarrow M_1 \cap M_2 = \{0\}$.
 - (c) If T is a homomorphism of an R-module M to an R-module H, then show that :
 - (i) T(o) = o
 - (ii) $T(-m) = -Tm, \forall m \in M$

(iii)
$$T(m_1 - m_2) = Tm_1 - Tm_2, \forall m_1, m_2 \in M.$$

- 11. (p) If A and B are submodules of M, then prove that $\frac{A+B}{B}$ is isomorphic to $\frac{A}{A \cap B}$.
 - (q) Define submodule of a module. Prove that arbitrary intersection of submodules of a module is a submodule.

3

3