B.Sc. (Part—III) Semester-VI Examination MATHEMATICS (OLD) (UPTO WINTER-2018)

(Linear Algebra)

PaperXI								
Time: Tl	nree	Hours]			[Maximum Marks : 60			
		Question No. 1 is compulsory and at Attempt ONE question from each un	-	t this question	once only.			
1. Choo	se t	he correct alternative :						
(i)	For	two subspaces U and W of V(F)						
-		$V = \dot{U} \oplus W \Leftrightarrow \underline{\hspace{1cm}}$			·1			
	(a)	$V = U + W \text{ and } U \cap W = \{0\}$	(b)	V = U + W				
	(c)	$U \cap W = \{0\}$	(d)	None of these				
(ii)	If S	is nonempty subset of vector space	V, the	en L(S) is	1			
	(a)	Smallest subspace of V containing V						
	(b)	Largest subspace of V containing S						
	(c)	Smallest subspace of V containing S	ı					
	, ,	None of these						
		: $U \rightarrow V$ be a linear map and U	be a	finite dimensi				
		$R(T) + \dim N(T) = \underline{\hspace{1cm}}$	<i>(</i> 1.)	V. D	I			
		dim U	, ,	dim R				
	` '	dim N		None of these	-			
(iv)	The	Kernel of a linear transformation T:	U -	→ V is a subspa	ace of1			
	(a)	U and V	(b)	U				
	(c)	V	(d)	None of these				
(v)	If W	W is subspace of a vector space V over F, then $\{f \in \hat{V}/f(W) = 0, \forall w \in W\}$ is called						
	as:				1			
	(a)	Annihilation of W	(b)	Dual space of	W			
	(c)	Hilatory of W	(d)	None of these				
(vi)	If Ŷ	ŷ is n-dimensional, then the dimension of V is :						
	(a)	0	(b)	n				
	(c)	Less than n	(d)	Greater than n				
WPZ337	6	1			(Contd.)			

4.

	(vii)	In an inner product space V, the inequis known as:	uality ($ \mathbf{u} \cdot \mathbf{v} \le \mathbf{u} \cdot \mathbf{v} \text{ for all } \mathbf{u}, \mathbf{v} \in \mathbf{V}$			
		(a) Triangle inequality	(b)	Bessel's inequality			
		(c) Schwartz inequality	(d)	None of these			
	(viii)	If $ V = 1$ then V is called:		1			
		(a) Standard inner product	(b)	Normalised			
		(c) Scalar inner product	(d)	Orthonormal			
(ix) If A is any submodule of a R-module M, then the zero element of the quotient module							
		$\frac{M}{A}$ is:		1			
		(a) A	(b)	M			
		(c) {0}	(d)	None of these			
	(x) If V is IPS and u, $v \in V$ then u is said to be orthogonal to V if $(u, v) =$ 1						
		(a) 1	(b)	-1			
		(c) 0	(d)	None of these			
		UNI	TI				
2.	(a)	If S is a nonempty subset of a vecto	r space	V, then prove that L(S) is the smallest			
		subspace of V containing S.		5			
	(b)	Prove that a nonempty subset U of	a vecto	or space V(F) is a subspace of V iff			
		$\alpha u + \beta v \in U + \alpha, \beta \in F \text{ and } + u, v$	$t \in U$.	5			
3.	(p)	Let U and W be subspaces of a vector space V3, where					
		$U = \{(x_1, x_2, x_3) \in V_3 \mid x_3 = x_1 + x_2\},\$					
		$W = \{(x_1, x_2, x_3) \in V_3 \mid x_1 = x_2\}$	$= X_3$.				
		Show that V ₃ is the direct sum of U and W.					
	(q)	Prom given two LI vectors $(1, 0, 1, 0)$, $(0, -1, 1, 0)$ of V_4 , find a basis of V_4 that					
		includes these two vectors.		5			
	UNIT—II						
4.	(a)	Let a mapping $T: V_2 \rightarrow V_2$ be defined	by T(x,	y) = (x', y') , where $x' = x \cos\theta - y \sin\theta$,			
	$y' = x \sin\theta + y \cos\theta$. Show that T is a linear map.						
	(b)	If $T: U \to V$ be a linear map then p	rove tha	it:			
		(i) R(T) is a subspace of V					
		(ii) N(T) is a subspace of U.		5			
5.	(p)	If $T: U \rightarrow V$ be a nonsingular linea 1-1 and onto map.	r map, ti	hen prove that $T^{-1}: V \to U$ is a linear			
WP2	Z—331		2				
** * 2.	. 55		2	(Contd.)			

(q) Find the range, kernel, rank and nullity of the matrix $A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ and verify

Rank-Nullity theorem.

5

UNIT-III

- 6. (a) If W is a subspace of a finite dimensional vector space V, then prove that A(A(W)) = W.
 - (b) If W_1 and W_2 are subspaces of a finite dimensional vector space V, then show that $A(W_1 + W_2) = A(W_1) \cap A(W_2)$.
- (p) Let U, V be finite dimensional complex vector spaces and A: U → V, B: U → V be linear maps. If α ∈ C, then prove that:
 - (i) $(A + B)^{\bullet} = A^{\bullet} + B^{\bullet}$
 - (ii) $(\alpha A)^* = \overline{\alpha} A^*$.
 - (q) Let the linear maps $T: V_3 \to V_3$ and $S: V_3 \to V_3$ be defined as $T(x_1, x_2, x_3) = (2x_1 3x_2, x_1 + x_2, x_3)$, and $Se_1 = e_2 e_3$, $Se_2 = e_3$, $Se_3 = e_1 + e_2 + e_3$. Determine the linear maps: (i) S + T, (ii) 2T.

UNIT-IV

- 8. (a) In an inner product space V, prove that $|(u \cdot v)| \le ||u|| ||v||$, $\forall u, v \in V$.
 - (b) Let V be an inner product space over F. In V define the distance d(u, v) from u to v by d(u, v) = || u v ||. Prove that :
 - (i) d(u, v) = d(v, u)
 - (ii) $d(u, v) \le d(u, w) + d(w, v), \forall u, v, w \in V.$ 2+3
- 9. (p) Using Gram-Schmidt orthogonalisation process, orthonormalise the set of vectors $\{(1, 0, 1, 0), (1, 1, 3, 0), (0, 2, 0, 1)\}$ of V_4 .
 - (q) If W^{\perp} is the set of orthogonal vectors in an inner product space V, then prove that W^{\perp} is a subspace of V.

UNIT-V

- 10. (a) Prove that every abelian group G is a module over the ring of integers Z. 5
 - (b) If M_1 and M_2 are submodules of R-module M, then $M_1 + M_2$ is a submodule of M. Moreover, $M_1 + M_2$ is a direct sum of M_1 , $M_2 \Leftrightarrow M_1 \cap M_2 = \{0\}$.
- 11. (p) If T is a homomorphism of an R-module M to an R-module H, then prove that :
 - (i) $T_0 = 0$
 - (ii) $T(-m) = -Tm + m \in M$
 - (iii) $T(m_1 m_2) = Tm_1 Tm_2 + m_1, m_2 \in M.$
 - (q) If A and B are submodules of M, then prove that $\frac{A+B}{B} \cong \frac{A}{A \cap B}$.

WPZ—3376 3 525

