B.Sc. (Part-III) Semester-VI Examination MATHEMATICS (Old) (Upto Winter-2018) (Special Theory of Relativity)

					Paper—XII				
Tim	e : Tl	hree	Hour	rs]		[Maximum Marks:	60		
	Not	e :-	:—(1) Question No. 1 is compulsory and attempt it once only.						
			(2)	Solve ONE question fro	om each unit.	,			
1.	Cho	ose t	he co	orrect alternatives:					
	(i)	If $ds^2 > 0$, then the interval 'ds' is said to be:							
		(a)	Ligi	ht like	(b)	Space like			
		(c)	Tim	ne like	(d)	None of these	1		
	(ii)	The	elec	tromagnetic field tensor F	is antisymmetric i	f:			
		(a)	\mathbf{F}_{ij}	= F _{ji}	(b)	$\mathbf{F}_{ij} = -\mathbf{F}_{ji}$			
		(c)	F _{ij} :	= - F _{ij}	(d)	None of these	1		
	(iii) If p is the magnitude of momentum of a moving particle and E is the end								
		nun	erica	al value of $p^2 - \frac{E^2}{c^2}$ is:					
		(a)	m_0^2	c²		$-m_0^2c^2$			
		(c)	m_0^2	c	(d)	$m_0 c^2$	1		
	(iv)	(iv) If \overline{A} is a vector potential, then the magnetic field is given by:							
		(a)	H =	$= \nabla \phi \times \overline{\mathbf{A}}$	(b)	$\overline{H} = div. \overline{A}$			
		(c)	H =	= curl \overline{A}	(d)	None of these	1		
	(v)	Number of components of a tensor T _{ij} in four dimensions is:							
			10		(b)				
		(c)	16		(d)	None of these	1		
	(vi)	(i) The mass of particle $m = \frac{m_0}{\sqrt{1 - \frac{u^2}{c^2}}}$, where the particle is moving with velocity u relative							
		iner	tial f	rame is called as:					
		(a)	Equ	uivalent mass of a particle	(b)	Relativistic mass of a particle			
		(c)	Ine	rtial mass of a particle	(d)	None of these	1		

1

	nttp	://W\	ww.sgbauonine.com/								
	(vii)	Principle of relativity means:									
		(a)	Some inertial frames are equivalent	(b)	All inertial frames are equivalent						
		(c)	Inertial frames are not equivalent	(d)	None of these	1					
	(viii)	The time recorded by a clock moving with a body is called as:									
		(a)	Absolute time	(b)	Proper time						
		(c)	Improper time	(d)	None of these	1					
	(ix)	If an electromagnetic field is purely magnetic in an inertial frame, then the field									
		(a)	Only electric	(b)	Only magnetic						
		(c)	Electric as well as magnetic	(d)	None of these	1					
	(x)	Maxwell's equations of electromagnetic theory are invariant under:									
		(a)	Galilean transformations	(b)	Lorentz transformations						
		(c)	Guage transformations	(d)	None of these	1					
			UNITI								
2.	(a)	Sho	w that Lorentz transformation forms a group	respect to multiplication.	4						
	(b)	Show that the three dimensional volume element dxdydz is not Lorentz invariant but the fo dimensional volume element dxdydzdt is Lorentz invariant.									
	(c)	Show that simultaneity is relative in special relativity.									
3.	(p)	(p) Prove that in an inertial frame a body without influence of any forces moves in with constant velocity.									
	(q)	Show that $x^2 + y^2 + z^2 - c^2t^2$ is Lorentz invariant.									
	(r)	Dis	cuss the geometrical interpretation of Lorentz	trans	formations.	4					
			UNIT—II								
4.	(a)	Obt	tain the transformations for the velocities of par	ticle	under special Lorentz transformation	ons. 5					
	(b)	v relative to the observer, then	its								
		apparent length is contracted by the factor $\left(1 - \frac{u^2}{c^2}\right)^{1/2}$ in the direction of relative motion.									
			`	,		5					

(Contd.)

2

WPZ--3378

- 5. (p) Obtain the transformation of the Lorentz contraction factor $\left(1 \frac{u^2}{c^2}\right)^{1/2}$.
 - (q) Let u and u' be the velocities of a particle in two inertial system s and s' respectively, where s' is moving with velocity v relative to s along xx' axis. Show that:

$$\tan \theta' = \frac{\sin \theta \left(1 - \frac{v^2}{c^2}\right)^{1/2}}{\cos \theta - \frac{v}{u}}$$

and
$$u'^2 = \frac{u^2 \left[1 - 2\frac{v}{u}\cos\theta + \left(\frac{v}{u}\right)^2 - \left(\frac{v}{u}\right)^2\sin^2\theta\right]}{\left(1 - \frac{uv}{c^2}\cos\theta\right)^2}$$
.

UNIT-III

- 6. (a) Define:
 - (i) Time-like interval
 - (ii) Space-like interval
 - (iii) Four vector Ar
 - (iv) Proper time.
 - (b) Prove that there exists an inertial system s' in which the two events occur at one and the same time if the interval between two events is spacelike.
 - (c) What do you mean by covariant and contravariant vector?
- 7. (p) Show that:

$$x^{1} = -x_{1}, x^{2} = -x_{2}, x^{3} = -x_{3}, x^{4} = x_{4}$$

and hence $x_i = (-\vec{r}, ct)$.

- (q) Show that the square of the length of a four vector is invariant under Lorentz transformations.
- (r) Obtain the metric of the space-time geometry of special relativity.

UNIT-IV

8. (a) Define four force. Prove that the four force in component form is expressed as:

$$f' = \left(\frac{\overline{F}}{c\sqrt{1 - \frac{u^2}{c^2}}}, \frac{\overline{F} \cdot \overline{u}}{c^2\sqrt{1 - \frac{u^2}{c^2}}}\right), \text{ where } \overline{F} = \frac{d\overline{p}}{dt}.$$

- (b) Prove that $E = c\sqrt{p^2 + m_0^2 c^2}$ and $\frac{dE}{dp} = u$.
- (c) Define four velocity and four acceleration. Show that the four velocity of a particle is a unit timelike vector.

WPZ—3378 3 (Contd.)

- 9. (p) Obtain the transformation equations for momentum and energy of a particle.
 - (q) Obtain the mass energy equivalence relation E = mc², where m is the relativistic mass of the particle.

UNIT--V

- 10. (a) Define Four potential. Write the transformations of the electromagnetic four potential vector using Lorentz transformations.
 - (b) Prove that the set of Maxwell's equations div. $\overline{E} = 0$ and curl $\overline{H} = \frac{1}{c} \frac{\partial \overline{E}}{\partial t}$ can be written as

$$\frac{\partial F_{ik}}{\partial x^k} = 0$$
, where F_{ik} is the electromagnetic field tensor.

- 11. (p) Define electromagnetic field tensor F_{ij} . Express the components of F_{ij} in terms of the electric and magnetic field strengths.
 - (q) Define Electric field strength \overline{E} and Magnetic field strength \overline{H} in terms of scalar and vector potential. Show that \overline{E} and \overline{H} remain invariant under Guage transformations. 1+1+3

5