B.Sc. (Part-III) Semester-VI Examination MATHEMATICS (New)

(Special Theory of Relativity)

Paner-XII

				гарс	7AII				
Гiп	ie : Tl	hree	Hour	s]		[Maximum Mar	ks : 60		
	Not	e :-	-(1)	Question No. 1 is compulsor	ry.				
			(2)	Attempt ONE question from	each unit				
1.	Cho	ose 1	he co	orrect alternative :					
	(i)	The order of outer product is the of the order of the tensors.							
		(a)	Pro	duct	(b)	Difference			
		(c)	Sum	ı	(d)	None of these	1		
	(ii)	The							
		(a)	ds^2	= 0	(b)	$ds^2 < 0$			
		(c)	ds^2	> 0	(d)	None of these	1		
	(iii)	In N	lewto	onian Mechanics, an event is i	dentified	by real numbers.			
		(a)	1		(b)	2			
		(c)	3		(d)	4	1		
	(iv)	'Pri	nciple	e of Relativity' means:					
		(a)	Son	ne inertial frame are equivalent	t (b)	All inertial frame are not equivale	nt		
		(c)	All	inertial frame are equivalent	(d)	None of these	1		
	(v)	Length contraction means:							
		(a)	Mo	ving rod measures shorter	(b)	Moving rod measures larger			
		(c)	Res	t rod measures shorter	(d)	Rest rod measures longer	1		
(vi) In relativistic addition law for velocities, when $c \to \infty$ then:									
		(a)	u'=	·u +v	(b)	$\mathbf{u'} = \mathbf{u} - \mathbf{v}$			
		(c)	u' =	v - u	(d)	None of these	1		
	(vii)	Fou	r vel	ocity of a particle is defined a	s:	•.			
		(a)	u ⁱ =	$=\frac{ds}{dx^{i}}$	(b)	$u^i = \frac{dx^i}{ds}$			
		(c)	u =	$\frac{dx}{ds^{i}}$	(d)	$u = \frac{dx^{i}}{ds}$	1		
	(viii)	F =	mas	s X acceleration where mass =	·	is the longitudinal mass of the par	ticle.		
		(a)	(1 -	$\frac{m_0}{-u^2/c^2)^{1/2}}$	(b)	$\frac{m_0}{(1-u^2/c^2)^{3/2}}$			
		(c)	(1 -	$\frac{m_0}{-u^2/c^2)^{-3/2}}$	(d)	None of these	1		

,	Ger	Mage	energy	equivalence	relation	ic	given	hv	٠
١	1X.)	Mass	CHCIEV	equivalence	ICIanon	19	given	U.y	•

(a) $E = mc^2$

(b) $E = m/c^2$

(c) $E = c^2/m$

(d) None of these

(x) If \overline{A} is a vector potential then magnetic field is given by:

(a) $\overline{H} = \text{div } \overline{A}$

(b) $\overline{H} = \text{curl } \overline{A}$

(c) $\overline{H} = \Delta \phi \times A$

(d) None of these

1

1

UNIT---I

Obtain Galilean transformation equation for two inertial frames in relative motion. 2.

4

- Show that the circle $x'^2 + y'^2 = a^2$ in s' is measured to be an ellipse in s if s' moves with uniform velocity relative to s.
- Show that the Newton Kinematical equations of motion are invariant under Galilean transformation.

4

6

- 3. What are Lorentz transformations? Obtain an expression for them. (a)
 - (b) Prove that in an inertial frame a body without influence of any forces, moves in a straight line with constant velocity. 4

UNIT-II

Show that the velocities u and u' measured in two inertial systems s and s' are related by 4.

$$\sqrt{1 - \frac{u^2}{c^2}} = \frac{\sqrt{1 - \frac{{u'}^2}{c^2}} \cdot \sqrt{1 - \frac{v^2}{c^2}}}{\left(1 + \frac{u'_x v}{c^2}\right)}$$

where s' is moving with velocity 'v' relative to s along xx' axis.

5

- (b) Show that in nature no signal can move with a velocity greater than the velocity of light relative to any inertial system. 5
- 5. Deduce the transformation of particle velocities and hence obtain relativistic addition law for velocities. 6
 - (b) Write a short note on 'Time dilation'.

4

UNIT-III

Show that the interval or metric ds² between two events is given by: 6.

$$ds^2 = -dx^2 - dy^2 - dz^2 + c^2dt^2$$

Prove that ds² is invariant under Lorentz transformation.

6

(b) Prove that there exists an inertial system s' in which the two events occur at one and the same point if the interval between two events is time like. 4

WPZ-3381

7. (a) Prove that:

(i)
$$T'^{14} = \alpha^2 \left\{ -\frac{v}{c} T^{11} + T^{14} + \frac{v^2}{c^2} T^{41} - \frac{v}{c} T^{44} \right\}$$

(ii)
$$T'^{23} = T^{23}$$
.

- (b) Define:
 - (i) Contravariant tensor of order one
 - (ii) Covariant tensor of order one
 - (iii) Kronecker delta
 - (iv) Space like interval.

UNIT-IV

- 8. (a) Prove that $E = mc^2$, where E is the energy of the particle.
 - (b) Show that the four velocity, in component form can be expressed as:

$$\mathbf{u}' = \left(\frac{\overline{\mathbf{u}}}{c\sqrt{1 - \mathbf{u}^2/c^2}}, \frac{1}{\sqrt{1 - \mathbf{u}^2/c^2}}\right), \text{ where } \overline{\mathbf{u}} = (\mathbf{u}_x, \mathbf{u}_y, \mathbf{u}_z).$$

- 9. (a) Show that the quantity $p^2 E^2/c^2$ is an invariant whose numerical value is $-m_0^2 c^2$.
 - (b) Define four momentum vector. Obtain the transformation equations for four momentum and energy.

UNIT-V

- 10. (a) Define current four vector. Transform its components under Lorentz transformation. Deduce an expression $c^2\rho^2 J^2 = \rho_0^2 c^2 = invariant$.
 - (b) Obtain the wave equation for the propagation of electric \(\overline{E}\) and magnetic \(\overline{H}\) field strengths in vacuum with velocity of light.
- 11. (a) Show that the Hamiltonian for a charged particle moving in an electromagnetic field is:

$$H = \left\{ m_0^2 c^4 + c^2 \left(p + \frac{e}{e} A \right)^2 \right\}^{1/2} + e \phi.$$

(b) Define electromagnetic field tensor F_{ij} and obtain the components F_{23} , F_{31} , F_{12} , also show that F_{ij} is antisymmetric.

6

525

http://www.sgbauonline.com/