AU-159

B.Sc. (Part-III) Semester-VI Examination MATHEMATICS (New) (Special Theory of Relativity) Paper—XII

			Paper-	- X II				
		-(1)	Hours] Question No. 1 is compulsory. Attempt ONE question from each	unit.	[Maximum Marks :	60		
1.	Cho	ose t	the correct alternative :					
	(i)	If d	s = 0, then the interval ds is said t	o be:		1		
		(a)	light like	(b)	space like			
		(c)	time like	(d)	None of these			
	(ii) Lorentz transformation reduces to Galilean transformation if :							
		(a)	V = C	(b)	V >> C			
		(c)	V < < C	(d)	None of these			
	(iii) Signature of the Minkowskian space-time $ds^2 = -dx^2 - dy^2 - dz^2 + c^2dt^2$ is							
		(a)	2	(b)	-2			
		(ċ)	3	(d)	1			
	(iv)	The	the transformations $\bar{r}' = \bar{r} - \bar{v}t$ and $t' = t$ are known as:					
		(a)	General Lorentz transformation	(b)	Special Lorentz transformation			
	-	(c)	Simple Galilean transformation	(d)	General Galilean transformation			
	(v)	The	time recorded by a clock moving	with a	body is known as :	1		
		(a)	Time dilation	(b)	Proper time			
		(c)	Fixed line	(d)	None of these			
	(vi)	The	simultaneity in special relativity is	3 :		1		
		(a)	relative	(b)	constant			
		(c)	absolute	(d)	None of these			
VOX	358	325	1		(Con	td.)		

	(vii)) The	four velocity of a particle is a unit		vector.	1		
		(a)	space like	(b)	light like			
		(c)	time like	(d)	None of these			
	(viii)	viii) Mass energy equivalence relation is given by :						
		(a)	E = mc	(b)	$E = m/c^2$			
		(c)	$E = e^2/m$	(d)	None of these			
	(ix)	The	of the electric field is:	1				
		(a)	$\overline{E} = \operatorname{grad} \phi - \frac{1}{c} \frac{\partial \overline{A}}{\partial t}$	(b)	$\overline{E} = \text{grad } \phi + \frac{1}{c} \frac{\partial \overline{A}}{\partial t}$			
		(c)	$\overline{E} = -\operatorname{grad} \phi - \frac{1}{c} \frac{\partial \overline{\Lambda}}{\partial t}$	(d)	$\overline{E} = -\operatorname{grad} \phi + \frac{1}{c} \frac{\partial \overline{A}}{\partial t}$			
	(x)	Fou	r force $f' = $			1		
		(a)	$\frac{du^{i}}{ds}$	(b)	$\frac{dx^{i}}{ds}$			
		(c)	dp ⁱ ds	(d)	None of these			
			UNIT—	- I				
2.	(a)) Define inertial system. Prove that in an inertial frame a body, without inf						
		forces, moves in a straight line with constant velocity.						
	(b)) Discuss the Geometrical interpretation of Lorentz transformation.						
	(c)	Show that $x^2 + y^2 + z^3 - c^2t^2$ is Lorentz invariant.						
3.	(p)	Prove that Newton's fundamental equations of motion are invariant unde transformation.						
	(q)) What are the postulates of special relativity ?						
	(r)	Show that the three dimensional volume element dxdydz is not Lorentz						
		the	four dimensional volume elements do	dydz	dt is Lorentz invariant.	4		
VOX	<—358	325	2			(Contd.)		

UNIT-II

- 4. (a) Derive the transformation for the acceleration of a particle. Prove that when u, v < < c, these transformation deduce to Galilean one.
 - (b) Obtain the relativistic transformation formulae for the velocities of particle.
- 5. (p) Obtain the transformation of the Lorentz contraction factor $\sqrt{1-\frac{u^2}{c^2}}$.
 - (q) An observer moving along the x-axis of S with velocity V observes a body of proper volume V₀ moving with velocity u along the x-axis of S. Show that the observer

measures the volume to be equal to
$$V_0 \sqrt{\frac{(c^2-v^2)(c^2-u^2)}{(c^2-uv)^2}}$$
 .

UNIT-III

6. (a) Define four tensor.

Prove that:

(i)
$$T^{11} = \alpha^2 \left\{ T^{11} - \frac{V}{C} T^{14} - \frac{V}{C} T^{41} + \frac{V^2}{C^2} T^{44} \right\}$$

(ii)
$$T^{12} = \alpha \left\{ T^{12} - \frac{V}{C} T^{42} \right\}$$
 1+2+2

- (b) Define length of four radius vector. Show that $x^1 = -x_1$, $x^2 = -x_2$, $x^3 = -x_3$, $x^4 = x_4$ and then deduce that $x_1 = (-\overline{r}, \text{ ct})$.
- (p) Define four vector A^r. Show that the square of the length of a four vector is invariant under Lorentz transformation.
 - (q) Prove that there exists an inertial system s' in which the two events occur at one and the same time if the interval between two events is space like.
 5

UNIT-IV

8. (a) Prove that
$$L = -m_0 c^2 \sqrt{1 - \frac{u^2}{c^2}}$$
 for the relativistic Lagrangian.

www.sgbauonline.com

(b) Define four velocity. Prove that the four velocity, in component form can be expressed as:

$$u^{i} = \begin{pmatrix} -\frac{\overline{u}}{c^{2}}, -\frac{1}{\sqrt{1 - \frac{u^{2}}{c^{2}}}} \end{pmatrix},$$

where $\overline{u} = (u, u, u) = \text{ordinary } z\text{-dimensional velocity of the particle.}$

- 9. (p) Obtain Einstein's mass energy equivalence relation.
 - (q) Define four velocity and four acceleration. Show that four velocity and four acceleration are mutually orthogonal.

UNIT---V

- 10. (a) Define electric and magnetic field strenths in terms of scalar φ and vector potential A
 and show that E and H remain invariant under Gauge transformation.
 2+3
 - (b) Prove that the Lagrangian for a charge particle in electromagnetic field is :

$$L = m_0 c^2 \sqrt{1 - \frac{u^2}{c^2} + \frac{e}{c} \vec{A} \cdot \vec{u} - e\phi}.$$

11. (p) Show that the Hamiltonian for a charged particle moving in an electromagnetic field is:

$$H = \left\{ m_0^2 c^4 + c^2 \left(P - \frac{e}{c} A \right)^2 \right\}^{1/2} + e\phi.$$
 5

(q) State Maxwell's equations of electromagnetic theory in vacuum. Also find its equations in component form.