- (b) If an electromagnetic field is purely magnetic in an inertial frame S, then describe the field in inertial frames S'.
- 11. (p) Obtain the transformation for electric and magnetic field strengths.
 - (q) Define electromagnetic field tensor F_{ij}. Express the components of F_{ij} in terms of the electric and magnetic field strengths.

B.Sc. (Part—III) Semester—VI Examination	
MATHEMATICS	
Paper—XII	
(Special Theory of Relativity)	
Time—Three	Hours] [Maximum Marks—60
Note :—(1)	Question one is compulsory and attempt it at once only.
(2)	Solve one question from each unit.
1. Choose correct alternatives:	
(i) Prir	ciple of relativity means 1
(a)	Some inertial frames are equivalent
(b)	All inertial frames are equivalent
(c)	inertial frames are not equivalent
(d)	None of these
(ii) If $ds^2 = 0$ then the interval 'ds' is said to be:	
	1
(a)	Light like
(b)	Space like
(6)	Time like

(d) None of these

- (iii) Length contraction means _____.
 - (a) Moving rod measures longer
 - (b) Moving rod measures shorter
 - (c) Rest rod measures shorter
 - (d) Rest rod measures longer
- (iv) Force \overline{F} = mass × acceleration; where mass = ______ is longitudinal mass of the particle. 1
 - (a) $\frac{m_0}{(1-u^2/c^2)^{1/2}}$
 - (b) $\frac{m_0}{(1-u^2/c^2)^{3/2}}$
 - (c) $\frac{m_0}{(1-u^2/c^2)^{-3/2}}$
 - (d) None of these
- (v) If ϕ is a scalar potential and A is the vector potential then the electric field is given by:
 - (a) $\overline{E} = \operatorname{grad} \phi \frac{1}{c} \frac{\partial \overline{A}}{\partial t}$
 - (b) $\overline{E} = \operatorname{grad} \phi + \frac{1}{c} \frac{\partial \overline{A}}{\partial t}$
 - (c) $\overline{E} = -grad \phi \frac{1}{c} \frac{\partial \overline{A}}{\partial t}$
 - (d) $\overline{E} = -grad \phi + \frac{1}{c} \frac{\partial \overline{A}}{\partial t}$

UBS-48914(Re) 2 (Contd.)

UNIT---IV

- 8. (a) Prove that $L = -m_0 c^2 \sqrt{1 u^2/c^2}$ for relativistic Lagrangian 5
 - (b) Show that E = mc², where E is the energy of the particle.
- 9. (p) Prove that the four velocity in component form can be expressed as

$$u^i = \left(\frac{\overline{u}}{c\sqrt{1 - u^2/c^2}}, \frac{1}{\sqrt{1 - u^2/c^2}}\right),$$

where $\overline{u} = (u_x, u_y, u_z)$ = ordinary three dimensional velocity of the particle.

- (q) Show that the quantity $P^2 \frac{E^2}{c^2}$ is an invariant whose numerical value is $-m_0c^2$.
- (r) A particle is given a kinetic energy equal to n times its rest energy m₀c². What are (i) its speed and (ii) momentum?

UNIT-V

 (a) Define electric E and magnetic H field strengths in terms of scalar and vector potential. Show that E and H remain invariant under Gauge transformation.

UBS--48914(Re) 7

(Contd.)

(q) Prove that if the body moves with uniform velocityv relative to the observer then its apparent length

is contracted by the factor $\left(1-\frac{v^2}{c^2}\right)^{1/2}$ in the

direction of relative motion.

UNIT-III

6. (a) Show that the interval or metric ds² between two events is given by:

$$ds^2 = -dx^2 - dy^2 - dz^2 + c^2 dt^2$$

Prove that ds² is invariant under Lorentz transformations. 2+3

(b) Define four vectors:

Show that $A^1 = -A_1$, $A^2 = -A_2$, $A^3 = -A_3$ and $A^4 = A_4$.

- 7. (p) Define:
 - (i) Contravariant tensor of rank two
 - (ii) Kronecker delta
 - (iii) Covariant tensor of rank two
 - (iv) Conjugate metric tensor.
 - (q) Obtain the transformations of the components $T^{\prime 12}$ and $T^{\prime 13}$.

4

UBS-48914(Re) 6 (Contd.)

- (vi) Number of components of a tensor T_{ij} in four dimensions is:
 - (a) 10
 - (b) 6
 - (c) 16
 - (d) None of these
- (vii) When u, v << c then the transformation of acceleration is:
 - (a) $\overline{a}' = \overline{a}$
 - (b) $\bar{a}' < \bar{a}$
 - (c) $\overline{a}' > \overline{a}$
 - (d) None of these
- (viii) Inertial system means the reference system where is valid.
 - (a) Newton's first law of motion
 - (b) Newton's second law of motion
 - (c) Newton's third law of motion
 - (d) None of these
 - (ix) Maxwell tensor F_n is ______.

(a)
$$\frac{\partial A_i}{\partial x^j} - \frac{\partial A_j}{\partial x^i}$$

(b)
$$\frac{\partial A_j}{\partial x^i} - \frac{\partial A_i}{\partial x^j}$$

(c)
$$\frac{\partial \mathbf{A_i}}{\partial \mathbf{x^j}} + \frac{\partial \mathbf{A_j}}{\partial \mathbf{x^i}}$$

(d) None of these

UBS-48914(Re)

3

(Contd.)

- (x) The mass of particle $m = \frac{m_0}{\sqrt{1 u^2/c^2}}$; where the particle is moving with velocity u relative to inertial frame is called as ______.
 - (a) Equivalent mass of a particle
 - (b) Relativistic mass of a particle
 - (c) Rest mass of a particle
 - (d) None of these

UNIT-I

2. (a) Show that the electromagnetic wave equation:

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2} = 0$$

is not invariant under the Galilean transformation equations.

- (b) Define inertial system. Prove that in an inertial frame a body, without influence of any forces, moves in a straight line with constant velocity.
- (c) Show that $x^2 + y^2 + z^2 c^2t^2$ is Lorentz invariant.

- 3. (p) Discuss the geometrical interpretation of Lorentz transformations.
 - (q) Prove that Newton's kinematical equations of motion are invariant under the Galilean transformations.
 - (r) Show that the three dimensional volume element dxdydz is not Lorentz invariant but the four dimensional volume element dxdydzdt is Lorentz invariant.

UNIT-II

- (a) Deduce the transformations of particle velocities and hence obtain relativistic addition law for velocities.
 - (b) There are three galaxies G₁, G₂ and G₃.
 Observations in G₁ show that G₂ and G₃ are moving in opposite directions each with a speed of 0.5 c.
 What is the speed of G₁ observed in G₂? What is the speed of G₃ measured in G₂?
- 5. (p) Show that in nature no signal can move with a velocity greater than the velocity of light relative to any inertial system.

UBS--48914(Re)

1

(Contd.)

UBS-48914(Re)

5

(Contd.)