AU-155

B.Sc. (Part-III) Semester-VI Examination MATHEMATICS (OLD) UPTO WINTER-2018 (Special Theory of Relativity) Paper—XII

Time	e : 7	Three	Hours]		[Maximum Mark	s:60
Note	e :		Question No. 1 is compulsory and a Attempt ONE question from each un		pt it once only.	
1.	Cho	ose t	he correct alternative :			
	(i)	"All	inertial frames are equivalent." This	state	ement is called :	1
		(a)	Principle of relativity	(b)	Special relativity	
		(c)	Galilean principle of relativity	(d)	None of these	
	(ii)	In s	pecial relativity, the simultaneity is:			1
		(a)	absolute	(b)	relative	
		(c)	constant	(d)	None of these	
	(iii)	The	relativistic addition law for velocity	is :		1
		(a)	u' = u - v	(b)	$\mathbf{u}' = \mathbf{c}$	
		(c)	$\mathbf{u'} = \frac{\mathbf{u} - \mathbf{v}}{1 - \frac{\mathbf{u}\mathbf{v}}{\mathbf{c}^2}}$	(d)	None of these	
	(iv)	The	conclusion 'moving clock go slow' i	s :		1
		(a)	Time dilation	(b)	Length contraction	
		(c)	Lorentz contraction	(d)	None of these	
	(v)	At e	reduced by :	1		
		(a)	One	(b)	Two	
		(c)	Three	(d)	Four	
VOX-	<u>-35</u> 8	822	. 1			Contd.)

	(vi)	$\delta_s^r A$	S <u> </u>			1		
		(a)	A ^s	(b)	A_{ϵ}			
		(c)	A^{r}	(d)	A _r			
	(vii)	vii) The force acting on the particle is parallel to the acceleration when the						
		part	icle is:			1		
		(a)	Parallel to its acceleration					
		(b)	Perpendicular to its acceleration		,			
		(c)	Either parallel or perpendicular to it	s acc	eleration			
		(d)	acceleration					
	(viii) The four velocity of the particle is a unit :							
		(a)	Null like vector	(b)	Light like vector			
		(c)	Space like vector	(d)	Time like vector			
	(ix)	potential is defined to within the :	1					
		(a)	Time derivative of the function f	(b)	Gradient of an arbitrary function f			
		(c)	Curl of the function f	(d)	None of these			
	(x)	The	The energy momentum tensor of electromagnetic field is :					
		(a)	Antisymmetric	(b)	Without trace free			
		(c)	Zero	(d)	Symmetric			
			UNIT-					
2.	(a)	Prove that $\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$ is invariant under Lorentz transformation.						
	(b)							
3.	(p)) Derive the Lorentz transformation equations.				6		
	(q)	q) Prove that Newton's fundamental equations of motion are invariant under the G						
		transformations.						
VON	, 25	227	2		. 10-	د ادغه		
v U2	د—358	344	2		(Con	ш.)		

UNIT-II

- 4. (a) Explain a short note on Length contraction.
 - (b) If \vec{u} and \vec{u}' be the velocities of a particle in two inertial system s and s' respectively where s' is moving with velocity v relative to s along the xx' axis, then show that :

$$\tan \theta' = \frac{\sin \theta \left(1 - \frac{v^2}{c^2}\right)^{1/2}}{\left(\cos \theta - \frac{u}{v}\right)}.$$

- 5. (p) Derive the transformation of Lorentz contraction factor $\left(1 \frac{u^2}{c^2}\right)^{1/2}$.
 - (q) An observer moving along the x-axis of s with velocity v observes a body of proper volume v_o moving with velocity u along the x-axis of s. Show that the observer measures the volume to be equal to:

$$v_0 \sqrt{\frac{(c^2 - v^2)(c^2 - u^2)}{(c^2 - uv)^2}}$$
 4

UNIT-III

- 6. (a) Show that the quantity $s^2 = -(x')^2 (x^2)^2 (x^3)^2 + (x^4)^2$ is invariant under the Lorentz transformations.
 - (b) Deduce the transformations for an anti symmetric four tensor T¹², T¹³ and T²⁴.

2+2+2

5

- 7. (p) Define:
 - (i) Covariant tensor of rank two
 - (ii) Contravariant tensor of rank two
 - (iii) Mixed tensor of rank two
 - (iv) Proper time

(v) Time like. 1+1+1+1+1

(q) Show that the metric $ds^2 = -(dx')^2 - (dx^2)^2 - (dx^3)^2 + (dx^4)^2$.

VOX—35822 3 (Contd.)

UNIT-IV

- 8. (a) Derive mass energy equivalence relation $E = mc^2$.
 - (b) Show that transformation equation of mass under Lorentz transformation is :

$$\mathbf{m} = \alpha \left(1 + \frac{\mathbf{u}_{\mathbf{X}}^{\prime} \mathbf{v}}{c^2} \right) \mathbf{m}^{\prime}.$$

9. (p) Deduce the transformations of the components of four force fi in the form:

$$f^{i} = \left(\frac{\vec{f}}{c \cdot \sqrt{1 - u^{2}/c^{2}}}, \frac{\vec{f} \cdot \vec{u}}{c^{2} \sqrt{1 - u^{2}/c^{2}}} \right).$$

(q) Define four velocity and four acceleration. Show that four velocity and four acceleration are mutually orthogonal.

UNIT-V

10. (a) Prove that the Lagrangian for a charged particle in electromagnetic field is :

$$L = -m_0 c^2 \sqrt{1 - \frac{u^2}{c^2} + \frac{e}{c} \overline{A} \cdot \overline{u} - e\phi}.$$

- (b) Suppose that an electromagnetic field is purely magnetic in an inertial frame S. Describe the field in inertial frame S'.
- 11. (p) Prove that the Lorentz force acting on a charge e is :

$$\vec{F}_{L} = e\vec{E} + \frac{e}{c}\vec{u} \times \vec{H}.$$

 (q) State the Maxwell's equations of electromagnetic theory in vacuum and write its equations in component form.