(Contd.)

[Maximum Marks: 60

B.Sc. (Part-III) Semester-VI Examination

6S-MATHEMATICS

Special Theory of Relativity

Paper-XII

Note:—(1) Question No. 1 is compulsory and attempt it at once only.

(2) Solve ONE question from each Unit.

1.	Choose the correct alternatives :							
	(1) If $ds^2 = 0$, then the interval 'ds' is said to be:							
		(a) Light like	(b)	Space like				
		(c) Time like	(d)	None of these				
	(2)	If an electromagnetic field is purely electric in an inertial frames, then the field in is:						
		(a) Only electric	(b)	Only magnetic				
		(c) Electric as well as magnetic	(d)	None of these				
	(3)	If ϕ is a scalar potential and \overline{A} is the vector by :	tor p	potential, then the electric field is give				
		(a) $\overline{E} = \operatorname{grad} \phi - \frac{1}{c} \frac{\partial \overline{A}}{\partial t}$	(b)	$\overline{E} = \operatorname{grad} \phi + \frac{1}{c} \frac{\partial \overline{A}}{\partial t}$				
		(c) $\overline{E} = -\operatorname{grad} \phi - \frac{1}{c} \frac{\partial \overline{A}}{\partial t}$	(d)	$\overline{E} = -\operatorname{grad} \phi + \frac{1}{c} \frac{\partial \overline{A}}{\partial t}$				
	(4)	The electric field strength \overline{E} and the mag	gnetic	c field strength $\bar{\Pi}$ are invariant under				
		(a) Galilean Transformations	(b)	Lorentz Transformations				
		(c) Gudge Transformations	(d)	None of these				

1

UNW = 24776

Time: Three Hours]

www.sgbauonline.com

	(5)	body is called as:	1							
		(a)	Absolute time	(b)	Proper time					
		(c)	Improper time	(d)	None of these					
	(6)	I,en	gth contraction means:			1				
		(a)	Moving rod measures longer	(b)	Rest rod measures longer					
		(c)	Moving rod measures shorter	(d)	Rest rod measures shorter					
	(7)	Iner	rtial system means the reference syste	here :	1					
		(a)	Newton's first law of motion is valid							
		(b)								
		(c) Newton's third law of motion is valid								
		(d)	None of these							
(8)		Fou		1						
		(a)	Unit space like vector	(b)	Unit time like vector					
		(e)	Unit light like vector	(d)	None of these					
((9)	The	simultaneity in special relativity is:		1					
		(a)	Constant	(b)	Relative					
		(c)	Absolute	(d)	None of these					
((10)	The		1						
		(a)	$ds^2 = 0$	(b)	$ds^2 > 0$					
		(c)	$ds^2 < 0$	(d)	None of these					
			UNIT-	-1						
2. ((a) Prove that in an inertial frame a body without influence of any forces mo									
		strai		3						
((b)	Sho	f motion are invariant under Galile	an						
		tran		4						
((c)	Sho	iant.	3						
UNW	- 24	776	2		(Cont	d.)				
					,	-/				

www.sgbauonline.com

3.	(p)	Show that	t Lorentz	transformation	forms a	group	with	respect to	multiplication.	4
----	-----	-----------	-----------	----------------	---------	-------	------	------------	-----------------	---

(q) Prove that
$$\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$$
 is invariant under special Lorentz transformations.

(r) What are the postulates of special relativity?

2

UNIT--II

- 4. (a) Show that in nature no signal can move with a velocity greater than the velocity of light relative to any inertial system.
 - (b) Show that the velocities u and u' measured in two inertial systems and s' are related by:

$$\sqrt{1 - \frac{u^2}{c^2}} = \frac{\sqrt{1 - \frac{u'^2}{c^2}} \cdot \sqrt{1 - \frac{v^2}{c^2}}}{\left(1 + \frac{u_x'}{c^2}\right)},$$

where s' is moving with velocity v relative to s along XX' axis.

5

- (p) Obtain the transformations for the acceleration of a particle under special Lorentz transformations.
 - (q) Explain:
 - (i) Time Dilation
 - (ii) Length contraction.

3+3

UNIT-III

6. (a) Define four vector. Show that:

$$A^{\dagger} = -A_1, \ A^2 = -A_2, \ A^3 = -A_3, \ A^4 = A_4.$$

- (b) Prove that there exists an inertial system s' in which the two events occurs at one and the same time if the interval between two events is time like.
- (c) What do you mean by covariant and contravariant tensor of rank two?
- (p) Define: Proper time. Show that the proper time of a moving object is always less than
 the corresponding interval in the rest system.
 - (q) Obtain the transformation of the components $T^{(1)}$ and $T^{(1)}$.
 - (r) What are world points and world line?

UNW -24776 3 (Contd.)

UNIT--IV

8. (a) Define four velocity. Prove that the four velocity in component form can be expressed as:

$$u^{i} = \left(\frac{\bar{u}}{c\sqrt{1 - \frac{\bar{u}^{2}}{c^{2}}}}, \frac{1}{\sqrt{1 - \frac{\bar{u}^{2}}{c^{2}}}}\right),$$

where $\overline{\mathbf{u}} = (\mathbf{u}_{x}, \mathbf{u}_{y}, \mathbf{u}_{z}) = \text{ velocity of the particle.}$

- 1+3
- (b) Show that the quantity $p^2 \frac{E^2}{c^2}$ is an invariant whose numerical value is $-m_0^2 c^2$. 3
- (e) Prove that four velocity and four acceleration are mutually orthogonal.
- 9. (p) Obtain the mass energy equivalence relation E = mc², where m is the relativistic mass of the particle.
 - (q) Prove that $E = c\sqrt{p^2 + m_0^2 e^2}$ and $\frac{dE}{dp} = u$.
 - (r) Define four force. Show that the four force and the four velocity are orthogonal to each other.

UNIT-V

- 10. (a) Define current four vector. Show that $c^2\rho^2-J^2$ is invariant and its value is $p_0^2.c^2$.
 - 1 + 4
 - (b) Prove that the set of Maxwell's equations div $\overline{H} = 0$ and curl $\overline{E} = -\frac{1}{c} \frac{\partial H}{\partial t}$ can be written
 - as $\frac{\partial F_{ij}}{\partial x^k} + \frac{\partial F_{jk}}{\partial x^i} + \frac{\partial F_{ki}}{\partial x^j} = 0$, where F_{ij} is the electromagnetic field tensor.
- II. (p) Define electromagnetic field tensor F_{ij} . Express the components of F_{ij} in terms of the electric and magnetic field strengths.
 - (q) Obtain the transformations for electric and magnetic field strengths.

UNW 24776 4 475