B.A./B.Sc. (Part-III) Semester-VI Examination MATHEMATICS-XI

(Linear Algebra)

Time—Three Hours

[Maximum Marks-60

- Note:—(1) Question No. 1 is compulsory. Solve this question in one attempt only.
 - (2) Attempt ONE question from each Unit.
- Choose the correct alternatives :
 - If U and W are the subspaces of a vector space
 V(F) then U ∪ W is a subspace iff:
 - (a) $U \subseteq W$ or $W \subseteq U$
 - (b) $U \supseteq W$ and $W \supset U$
 - (c) $U \cap W = \{0\}$
 - (d) None of these

1

- (ii) Any super set of a linearly dependent set is:
 - (a) Linearly independent
 - (b) Linearly dependent
 - (c) Linearly independent or linearly dependent
 - (d) None of these

1

UWO-42435

1

(Contd.)

- (iii) If W is a subspace of a finite dimensional vector space V then dim (V/W) =
 - (a) dim (V/W)
- (b) dim V dim W
- (e) dim V + dim W
- (d) None of these 1
- (iv) If T: U → V be a linear map then R(T) is a subspace of:
 - (a) U

(b) U ∩ V

(c) V

- (d) None of these 1
- (v) Let $T: V_2 \rightarrow V_2$ be a linear map and dim R(T) = 2. Then N(T) is:
 - (a) V,

(b) V₂

(c) $\left\{0_{V_2}\right\}$

- (d) None of these
- (vi) Annihilator of W, A(W) is a subspace of:
 - (a) W

(b) V

(c) Ŷ

- (d) None of these 1
- (vii) Every set of orthogonal vectors is:
 - (a) Linearly independent
 - (b) Linearly dependent
 - (c) Linearly independent and linearly dependent
 - (d) None of these

- 1

UWO--42435

2

(Contd.)

UNIT-V

- 10. (a) Let M be an R module. Then prove the following:
 - (i) $\mathbf{r} \cdot \mathbf{0} = 0$, $\forall \mathbf{r} \in \mathbb{R}$
 - (ii) $-(r \cdot a) = r(-a) = (-r)a$, $\forall r \in R$ and $m \in M$.
 - (b) Prove that arbitrary intersection of submodules of a module is a submodule.
 - (c) Let A be a submodule of unital R module M, prove that M/A is also unital R-module.

OR

- 11. (p) Let T be a homomorphism of an R-module M to an R-module H. Prove that:
 - (i) K(T) is a submodule of M and R(T) is a submodule of H; and
 - (ii) T is $1-1 \Leftrightarrow K(T) = \{0\}$.
 - (q) If A is a submodule of an R-module M and T: M → M/A defined by T(m) = A + m, ∀ m ∈ M, then prove that T is an R-homomorphism of M into M/A and Ker T = A.

(q) Let U and V be finite dimensional complex vector spaces and A: U → V; B: U → V be linear maps, then prove that (A + B)* = A* + B*.

UNIT-IV

- 8. (a) Prove that in an inner product space V.
 - (i) $\|\boldsymbol{\alpha} \cdot \mathbf{u}\| = |\boldsymbol{\alpha}| \cdot \|\mathbf{u}\|$
 - (ii) $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$, $\alpha \in \mathbf{F}$ and $\mathbf{u}, \mathbf{v} \in \mathbf{V}$.
 - (b) If V is a finite dimensional inner product space and W is a subspace of V then (W[⊥])[⊥] = W. Prove this.
 3
 - (c) Using Gram-Schmidt orthogonalisation process, orthonormise the linearly independent subset {(1, 1, 1), (0, 1, 1) (0, 0, 1)} of V₃.

OR

- (p) Prove that every finite dimensional inner product space has an orthogonal basis.
 - (q) Let V be an inner product space V and u, v ∈ V, prove that:

$$|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| \cdot ||\mathbf{v}||$$

(r) In an inner product space V over F, prove the parallelogram law:

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2 (\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2)$$
 3

UWO-42435 6 (Contd.)

- (viii) If V is a finite dimensional vector space and W is a subspace of V then $(W^{\perp})^{\perp}$ =
 - (a) V
- (b) W

(c) W[±]

- (d) None of these 1
- (ix) R-Module homomorphism is a linear transformation if:
 - (a) R with unit element
 - (b) R is commutative
 - (c) R is a field
 - (d) None of these

1

- (x) If the ring R has a unit element 1 and 1 a = a, for all a ∈ M, then M is called:
 - (a) A unital R module
 - (b) Right R-module
 - (c) Left R-module
 - (d) None of these.

UNIT-I

 (a) Let R⁺ be the set of all positive real numbers. Define the operations of addition ⊕ and scalar multiplication ⊗ as follows:

$$u \oplus v = uv, \ \forall \ u, v \in R^+$$

and $\alpha \otimes u = u^{\alpha}, \ \forall \ u \in R^+ \text{ and } \alpha \in R$

Prove that R+ is a real vector space.

3

UWO-42435

- 1

(Contd.)

- (b) Let U and W be two subspaces of a vector space V and Z = U + W. Then prove that Z = U ⊕ W ⇔ z = u + w is unique representation for any z ∈ Z and for some u ∈ U, w ∈ W. 4
- (c) If {v₁, v₂, ...v_n} is a basis for V or span V over F and if w₁, w₂, ...w_m ∈ V are linearly independent over F then prove that m ≤ n.

OR

- (p) Prove that a nonempty subset U of a vector space V over F is a subspace of V iff:
 - (i) $u + v \in U$, $\forall u, v \in U$ and
 - (ii) $\alpha u \in U, \forall \alpha \in F, u \in U.$
 - (q) Prove that an arbitrary intersection of subspaces of a vector space is again a subspace.
 - (r) Extend the linearly independent set $\{(1, 1, 1, 1), (1, 2, 1, 2)\}$ in V_4 to a basis for V_4 .

UNIT-II

- (a) Let T: U → V be a linear map then prove that :
 - (i) R(T) is a subspace of V
 - (ii) T is one-one \Leftrightarrow N(T) = $\{0_U\}$, a subspace of U.
 - (b) Determine range, rank, kernel and nullity of the linear map $T: V_3 \rightarrow V_4$ defined by :

$$T(x_1, x_2, x_3) = (x_1, x_1 + x_2, x_1 + x_2 + x_3, x_3).$$

UWO-42435 4 (Contd.)

(c) Prove that, a square matrix is non-singular iff its column Vectors are linearly independent. 2

OR

5. (p) Let T: U → V be a linear map and U be a finite dimensional vector space, then:

 $\dim R(T) + \dim N(T) = \dim V$. Prove this.

- (q) Let T: U → V be a linear map which is nonsingular then prove that T⁻¹: V → U is linear, one-one and onto.
- (r) Let $T: V_3 \rightarrow V_3$ be a linear map defined as:

$$T(x_1, x_2, x_3) = (3x_1, x_1 - x_2, 2x_1 + x_2 + x_3)$$

Then show that $(T^2 - 1) \cdot (T - 31) = 0$.

UNIT-III

6. (a) Let V be a finite dimensional vector space over F.

Then prove that $V = \hat{\hat{V}}$.

5

(b) Define annihilator of W. Prove that annihilator of

$$W = A(W)$$
 is a subspace of \hat{V} .

OR

7. (p) If S is a subset of vector space V and

$$A(s) = \left\{ f \in \hat{V} / f(s) = 0 \ \forall \ s \in S \right\}$$

Then prove that A(s) = A(L(s)), where L(s) is the linear span of S.

UWO-42435

5

(Contd.)