EITHER

		·		
12.	(a)	Define:		
		(i) Critical temperature in superconductor		
		(ii) Critical magnetic field in superconductor.	4	
	(b)	Give brief idea of BCS theory of superconductive	ity.	
		•	6	
	(c)	State any four applications of nanomaterials.	2	
	OR			:
13.	(p)	Explain Type-I and Type-II superconductors.	4	:
	(q)	Explain the effect of reduction of dimension on physical properties of nanomaterials.	the	·
	(r)	State applications of superconductors.	4	
				:
		,		•
		,	·	
		•		

			PHY	YSICS				
(Sta	tistic	al M	lechanics	and Solid	State Ph	ysics)		
Time : Ti	hree }	Hour	s]	[M.	aximum l	Marks: 80		
Note :		ALL questions are compulsory. Draw neat and well labelled diagrams wherever necessary.						
1. (A)	Fill	in the	e blanks :			. 2		
	(i)		minimum	volume of u	nit cell in p	phase space		
	(ii)	The	Co-ordina	tion numbe	r of FCC	structure is		
	(iii)	$\overline{J} =$	σĒis vec	tor form of		law.		
	(iv)		phenomer mate	non of hyste rials.	resis is e	chibited by		
(B)	Cho	Choose correct alternative: 2						
	(i)		number (of different	Bravais	Lattice is		
•		(a) (b)				٠.		
		` '	167 Unlimited	l		•		

B.Sc. (Part-III) Semester-VI Examination

1000

(ii)	Wh	ich of the following is not boson	?			(c)	What are conduction electrons?	2
	(a)	α-particle				OR		
	(b)	électron			9.	(n)	Distinguish metal, semiconductor and insulato	r on
	(c)	photon			7.	(p)	the basis of Band theory of solids.	3
	(d)	π-meson		•				4
(iii)) In a	cubic crystals all the sides of unit	cell meet		(q)	State and explain Bloch Theorem.		
. ,	at:	•				• /	Derive an expression for electrical conductiv	
	(a)	90°					terms of mean free path of electrons in a meta	
	(b)	60°						5
	(c)	45°				EIT	THER	
	(d)	120°			10.	(a)	State the failures of Langevin's theory of paramagne	etism
(iv) Sup	perconductors are perfectly:				(-)	and hence give quantum theory of paramagnet	
	(a)	Ferromagnetic		1				6
	(b)	diamagnetic		f		(b)	State properties of ferromagnetic material.	3
	(c)	Paramagnetic				(c)	State and explain Curie Weiss law.	3
	(d)	Ferrimagnetic	4		•	OR	O.	
(C) A1	ıswer	the following in ONE sentence:				•		
(i)	Wh	nat are quantum dots?			11.	(p)	Derive expression for diamagnetic susceptibility	
(ii)	•						the basis of Langevin's theory of diamagnetis brief.	6
		•	•	; ;				
(iii) Wł	nat is curie temperature?				(q)		
		nat are crystal defects?		I			cycle of Hysteresis is equal to the area of B-H	100p 4
EITHE	CR			:	•	(r)	What are ferromagnetic domains?	2
2. (a) Ex	kplain	the concept of phase space.	3			(1)	TY THE GO POLOTIONS	
UBS48915(R	le)	2	(Contd.)	1	UBS	5—48 9	915(Re) 5 (C	ontd.)

www.sgbauonline.com

(q)	State the conditions for applicability of F.D. statistic	ics 3				
(r)	By using F.D. statistics obtain an expression for Ferenergy at absolute zero temperature.	m 4				
Eľ	ГНЕК					
(a)	Explain Schottky and Frankel defect in crystal.	6				
(b)	State the names of crystal systems.	2				
(c)	What are Miller indices of a crystal plane having intercepts at a, 3b and ∞ on x, y, z ax respectively?	ng es 4				
OR						
(p)	Explain X-ray diffraction method to determine lattiparameter of crystal.	ce 4				
(p)	What are line defects? What is edge dislocation Explain with diagram.	ι? 5				
(r)	If X-rays of wavelength 0.9 A° are diffracted at a angle of 7° in the first order, what is the spacing between the adjacent planes of the crystal?					
EIT	HER					
a)	Explain Formation of conduction band, Valence bar and energy gap in solids.	nd 4				
b)	Explain the concept of Fermi energy. Assuming the expression for fermi energy $E = \frac{\hbar^2}{2m} (3\pi^2 \frac{N}{V})^2$	1 e 2/3				
	obtain expression for density of states.	6				

7.

8.

www.sgbauonline.com

- (b) By using M-B energy distribution, derive molecular speed distribution law. 5
- (c) What is most probable distribution? Show that the most probable speed $V_p = \sqrt{\frac{2KT}{m}}$.

OR

- (p) What are microstates and macrostates? Explain with example.
 - (q) By assuming thermodynamic probability in M.B. distribution, derive expression for M.B. distribution law.
 - (r) Find most probable velocity when: $m = 3 \times 10^{-23}$ gm, $T = 27^{\circ}$ C and $K = 1.38 \times 10^{-16}$ ergs/K.

EITHER

1

- 4. (a) What are Bosons and Fermions? State examples of Bosons and Fermions.
 - (b) Obtain an expression for Fermi-Dirac distribution law by assuming thermodynamic probability.5
 - (c) Explain the effect of temperature on Fermi function.

OR

5. (p) By assuming thermodynamical probability obtain an expression for B.E distribution law.

UBS-48915(Re)

3

(Contd.)