B.Sc. (Part—III) Semester—VI Examination STATISTICS

These Hours		[Maximum Marks: 80	
Time: Three Hours] Note:— ALL questions are compulsory	and	carry marks as indicated.	
Note :— ALL questions are compared		2	
1. (A) Fill in the blanks:			
(i) The divides a set of feasible			
	as a	special case of transportation problem and the demand at each destination	
1S			
(iii) The efficient alternative to multiple t	-test	is	
(iv) A substance or a factor attach to an ex			
as		2	
(B) Choose the correct alternative from the fe	ollow	ing:	
(i) is the process of coming as	s clos	se as possible the objectives.	
(a) Linear programming		Satisfying	
(c) Optimizing		Maximizing	
(ii) Randomization is a process in which t units:	he tre	atments are allocated to the experimental	
(a) At the will of the investigator	(b)	In sequence	
(c) With equal probability		None of above	
(iii) Completely randomized designs are	most	ly used in	
(a) Field experiments	(b)	Experiments on animals	
(c) Pot experiments	(d)	All the above	
VTM14203		(Contd.)	

(iv) In one way classification w	ith more than two treatments, the equality (b) χ^2 to (b)	
(a) t test	than two treatments, the equ	unlia .
(c) F test	(b) χ^2 test	ality of treatment
(C) Answer in one sentence :	(d) None of the above	
(ii) What are constraints in Lpp (iii) Which transportation method (iii) What is ideal time in sequencial (iv) Which design is used to	gives best initial basic feasible and	4 ion ?
	two way variability ?	
(i) Basic feasible solution (ii) Objective function of LPP. (B) Explain simpley matters		
(B) Explain simplex method of solving line(C) Define Linear programming problem.	ear programming problem.	4 4
3. (P) Define primal and dual problem of LPP. (Q) Explain the limited:		4
 (Q) Explain the limitation of linear programm (R) Solve the following LPP by graphical met. Max. Z = 2x + 4x 	ing.	4
Max. $Z = 2x_1 + 4x_2$ subject to	hod :	4
$x_{1} + 2x_{2} \le 5$ $x_{1} + x_{2} \le 4$		
and $x_1, x_2 \ge 0$. VTM—14203	(Co	4 ontd.)

- (A) Define transportation problem; state and prove a necessary and sufficient condition for the existence of a feasible solution to transportation problem.
 - (B) Explain the least cost method of finding initial basic feasible solution to the transportation problem and solve the following transportation problem by using this method:

	$\mathbf{W}_{\mathbf{i}}$	$\mathbf{W}_{_{2}}$	$\mathbf{W}_{_{3}}$	W_4	Supply
F_{i}	10	0	20	11	20
\mathbf{F}_{2}	12	7	9	20	25
F ₃	0	14	16	18	15
Demand	10	15	15	20	

OR

- (P) Define feasible solution, basic solution and non-degenerate solution in a transportation problem.
 - (Q) Explain Vogel's approximation method of finding initial basic feasible solution to the transportation problem and solve the following transportation problem by using this method:

	\mathbf{D}_{i}	D ₂	D_3	D_4	
O	11	13	17	14	250
O_2	16	18	14	10	300
O ₃	21	24	13	10	400
	200	225	275	250	

- 6. (A) Define:
 - (i) Saddle point
 - (ii) Value of game.

4

6

VTM--14203

3

(Contd.)

(B) Explain assignment problem with suitable example.

4

(C) Explain the procedure of finding optimal sequence for sequencing problem of n jobs on two machines.

OR

- 7. (P) Define:
 - (i) Total elapsed time
 - (ii) Optimal sequence.

4

(Q) A computer centre has three programmers. The centre incharge want three application programmes to be developed following table gives hours required to developed programme A, B, C by the programmers 1, 2 and 3 respectively:

Programmes

$$Programmer \left\{ \begin{array}{c|cccc} A & B & C \\ \hline 1 & 120 & 100 & 80 \\ \hline 2 & 80 & 90 & 110 \\ \hline 3 & 110 & 140 & 120 \\ \hline \end{array} \right.$$

Assign the programmers to the programmes in such way that the total time required is minimum.

(R) Explain maximin minimax principle of the game.

4

8. (A) Define analysis of variance technique with assumptions.

4

(B) Explain one way classification ANOVA with assumptions.

4

(C) Explain the various steps for two way classification with one observation per cell.

4

OR

(Contd.)

VTM-14203

4

9.	(P)	Explain the analysis of variance technique and its application.	4
	(Q)	Derive the various sum of square for one way classification.	4
	(R)	Write mathematical model and ANOVA table for two way classification with observation per cell.	on 4
10.	(A)	Define:	
		(i) Experiment	
		(ii) Treatment.	4
	(B)	Explain the purpose of design of experiment and characteristics of a good experiment design.	ıtal 4
	(C)	Explain CRD with its advantages and disadvantages.	4
		OR	
11.	(P)	What are the principles of design of experiment and explain any one.	4
	(Q)	Explain various sum of squares in CRD.	4
	(R)	Explain the efficiency of RBD relative to CRD.	4
12.	(A)	Explain latin square design and state under what conditions can this design be use	d ? 6
	(B)	Explain what is meant by main effects and interactions in factorial experiment. State the advantages of factorial experiment over a simple experiment.	ent. 6
		OR	
13.	. (P)	Give the mathematical model and assumptions of LSD and explain the analysis variance table of LSD.	s of 6
	(Q)	What is treatment contrast? When are two such contrast said to be orthogonal? S the advantages of factorial experiment.	tate 6
VT	'M1	4203 5	325