B.Sc. (Part—III) Semester—VI Examination 6S: STATISTICS

			US . STATIS	IIC	3				
Time: T	hree	Hou	urs]		[Maximum Mar	ks: 80			
			Note: All questions	are	compulsory.				
1. (A)) Fill in the blanks :—								
	(i)	of feasible region.							
	(ii) When two competitors play game then it is called game.								
	(iii) In LSD, number of rows, columns and number of treatments are								
	(iv)	(iv) For the design with b blocks and v treatments, the total number of experime units required are							
(B)	Cho	ose 1	the correct alternative from the fe	ring :—	2				
	(i)	In I	LPP, the function to be optimized	is kı	nown as				
		(a)	Constraint	(b)	Restriction				
		(c)	Objective function	(d)	None of these				
	(ii)	In b	palanced transportation problem _		•				
		(a)	$\Sigma a_{i} > \Sigma b_{j}$	(b)	$\Sigma a_i < \Sigma b_j$				
,		(c)	$\Sigma a_i \neq \Sigma b_j$	(d)	$\sum a_i = \sum b_j$				
	(iii)	The	principles of are used	l in (CRD.				
		(a)	local control and randomisation	(b)	local control and replication				
		(c)	randomisation and replication	(d)	None of the above				
	(iv) LSD is incomplete layout.								
		(a)	two way	(b)	three way				
		(c)	four way	(d)	None of these				
(C)	Ans	wer	in ONE sentence each :			4			
	(i)	Def	ine contrast						
	(ii)	Wha	at is replication?						
	(iii)	Wha	at is payoff?						
	(iv)	Def	ine imbalanced transportation pro	blem					
VOX—358	335		1		((Contd.)			

www.sgbauonline.com

2. (A) Give the standard and canonical form of LPP.

4

(B) Define objective function and constraint of LPP.

4

(C) Solve the following LPP by graphical method:

Max
$$Z = 4x_1 - 3x_3$$

s.t.
$$2x_1 + x_2 \le 1000$$

$$x_1 + x_2 \le 800$$

$$x_i \le 400$$
 and $x_i \le 700$

and $x_1, x_2 \ge 0$.

OR

- 3. (P) Define basic feasible solution and optimum feasible solution.
- 4

- (Q) State the Simplex algorithm of solving LPP.
- (R) Solve the following LPP by graphical method:

$$Max Z = 4x, -2x,$$

s.t.
$$\mathbf{x}_i = 5\mathbf{x}_i \le 8$$

$$3x_1 - 4x_2 \le 9$$

and $x_i, x_i \ge 0$

4. (A) Explain column minima method of transportation problem and solve the following problem by column minima method:
6

(B) Define transportation problem and Vogel's approximation method.

- 6

(Conta.)

OR

5. (P) State and prove necessary and sufficient condition for existence of feasible solution to transportation problem. Explain non-degenerate solution to transportation problem. 6

2

VOX -35835

www.sgbauonline.com

(Q) Explain the North West corner rule and solve the following transportation problem by this method:

	D	E	F	G	Available
A	11	13	17	14	250
В	16	18	14	10	300
C	. 21	24	13	10	400
Require	- 200	225	275	250	

- 6. (A) Explain Hungarian algorithm to solve assignment problem.
 - (B) Define :- -
 - (i) Strategy
 - (ii) Pure strategy
 - (iii) Mixed strategy.

OR

- 7. (P) Define assignment problem and give its mathematical formulation.
 - (Q) Determine optimal sequence and total elapsed time and idle time if any for the following sequencing problem:

/ Jop									
Machine	J	J_2	J_3	${\rm J}_4$	$J_{_{5}}$	I_{0}	J_{7}	J_8 .	$J_{\mathfrak{g}}$
M_1	2	5	4	9	6	8	7	5	4
M_2	6	8	7	4	3	9	3	8	11

6

6

4

- 8. (A) Define ANOVA and explain its assumptions.
 - (B) State the null hypothesis and mathematical model for one way classification.
 - (C) Give ANOVA table for two way classification with m observation per cell.

OR

- 9. (P) Explain a linear model of two way classification with one observation per cell. 4
 - (Q) State the hypothesis to be tested in two way classification with m observation per cell.
 - (R) Give ANOVA table of two way classification with one observation per cell. 4

VOX—35835 3 (Contd.)

www.sgbauonline.com

10.	(A)	Define CRD and state its linear model.	4			
	(B)	Obtain the efficiency of RBD relative to CRD.	4			
	(C)	Discuss the advantages and disadvantages of RBD.	4			
		OR				
11. (P)	Define :					
		(i) Experimental error				
		(ii) Treatment.	4			
	(Q)	State the principles of design of experimental and explain any one of them.	4			
	(R)	Obtain the least square estimates of various effects in CRD.	4			
12.	(A)	Define :				
		(i) Contrast				
		(ii) Orthogonal Contrast.	4			
	(B)	Give the particular layout of 5 × 5 LSD with A, B, C, D, E treatments.	4			
	(C)	Explain Yate's method for 22 factorial experiment.	4			
		OR				
13.	(P)	Obtain various sums of squares in LSD.	4			
	(Q)	State advantages and disadvantages of LSD.	4			
	(R)	Give the various treatment combinations in 2 ² and 2 ³ factorial experiment in systemation order.	ic 4			