AR - 616

Sixth Semester B. Sc. (Part - III) Examination

6S: STATISTICS

P. Pages: 8

Time: Three Hours] [Max. Marks: 80

- 1. (A) Fill in the blanks :-
 - (i) A NS condition for a basic feasible solution to a LPP to be optimum is that
 - (ii) For the existance of saddle point in a game maximin value —— to the minimax value.
 - (iii) The term analysis of variance was introduced by ——.
 - (iv) The division of experimental unit into relatively homogenious subgroups is called as —— .
 - (B) Choose the correct alternatives from the following:—
 - (i) A NS condition for the existance of feasible solution to the transportation problem is ———

(a)
$$\sum_{i=1}^{n} ai = \sum_{j=1}^{n} bj$$

AR-616 P.T.O.

(b)
$$\sum_{i=1}^{n} ai > \sum_{j=1}^{n} bj$$

(c)
$$\sum_{i=1}^{n} ai < \sum_{j=1}^{n} bj$$

(d)
$$\sum_{i=1}^{n} ai \neq \sum_{j=1}^{n} bj.$$

- (ii) For zero sum games the algebraic sum of gains of losses is ——.
 - (a) 1
 - (b) 1
 - (c) 0
 - (d) ∞,
- (iii) The repetition of treatments under investigation is known as —— .
 - (a) replication
 - (b) randomisation
 - (c) Local control
 - (d) experimental error.
- (iv) An incomplete three way layout is
 - (a) CRD

AR-616

2

		(b) RBD
		(c) LSD
		(d) Factorial experiment. 2
	(C)	Answer in one sentence each :
		(i) Define objective function of general LPP.
		(ii) What do you mean by balanced transportation problem ?
		(iii) Give the mathematical model in Randomised Block Design.
		(iv) State the expression of treatment combinations to obtain main effect A in 2 ² factorial experiment.
2.	(A)	Explain the general Linear programming problem.
	(B)	Define slack and surplus variables in a LPP. 4
	(C)	Explain simplex algorithm in brief in LPP.
		OR
3.	(P)	Explain graphical method to solve LPP. Give its limitations.
AR-	616	3 P.T.O.

www.sgbauonline.com

- (Q) Define standard and canonical form of LPP.4
- (R) Use graphical method to solve the following LPP

Maximise $Z = 3x_1 + 4x_2$ subject to the constraints:

$$4x_1 + 2x_2 \le 80$$

$$2x_1 + 5x_2 \le 180$$

$$x_1, x_2 \ge 0$$

4

- (A) What do you mean by Transportation problem? Give its mathematical formulation.
 - (B) Determine an initial basic feasible solution to the following T. P. using the row minima method.

		To			
From	A	В	C	Avilability	
. I	50	30	220	1	
П	90	45	170	3	
m	250	200	50	4	
Requirement	4	2	2		8

OR

5. (P) State and prove a necessary and sufficient condition for the existence of a feasible solution for a transporation problem.

(Q) A manufacturer has distribution centres located at Agra, Allahabad and Calcutta. These centres have available 40,20 and 40 units of his product. Its retail outlets require the following number of units A-25,B-10, C-20, D-30,E-15. The shipping cost per unit in rupees between each centre and outlet is given in the following table:—

		Retail outlets				
Distribution Centres	A	В	C	D	E	
Agra	55	30	40	50	50	
Allahabad	35	30	100	45	60	
Calcutta	40	60	95	35	30	

Determine the optimal shipping cost by North West Corner Rule.

- (A) Explain an assignment problem. Give its mathematical formulation.
 - (B) State the optimal sequence algorithm for n jobs and 2 machines problem.
 - (C) Define two person zero sum game with example.

OR

 (P) We have seven jobs each of which has to go through the machines M₁ and M₂ in the order M₁ M₂. Processing Times (in hours)

AR-616 5 P.T.O.

are given as follows. Determine the optimal sequence of jobs and total elapsed time.

Jobs	1	2	3	4	5	6	7
Machine M,	3	12	15	6	10	11	9
Machine M,	8	10	10	6	12	1	3
-							4

- (Q) Give the outline of assignment problem for a minimisation problem.
- (R) Define saddle point of pay off matrix. Explain the rules for determining a saddler point.

4

- (A) Describe the technique of analysis of variance.
 - (B) State the mathematical model used in analysis of variance in two – way classification with one observation per cell. Explain the hypothesis to be used.
 - (C) Describe the analysis of variance table for a 2 – way classified data with K observations per cell.

OR

 (P) State the basic assumptions used in analysis of variance.

AR-616