B.Sc. (Part-III) Semester-VI Examination

STATISTICS

Tin	ie : Tl	hree	Hou	rs]		[Max	imum Marks : 80				
l .	(A)	Fill									
		(i)	A solution to LPP is the set of variables which satisfy constraints and regative restrictions of the problem.								
		(ii)	A transportation problem is balanced if								
((iii)	The reciprocal of the of the mean is known as precision.								
		(iv)	The term analysis of variance was introduced by 2								
	(B)	Cho	ose 1	se the correct alternative from the following:							
		(i) A constrained optimization problem may have :									
			(a)	Feasible solution							
			(b)	No feasible solution							
			(c)	e) A unique optimum feasible solution							
			(d)	All of the above							
		(ii)	Which one of the following is a part of every game theory model?								
			(a)	Players	(b)	Payoff					
			(c)	Probabilities	(d)	Strategies					
		(iii)	The degrees of freedom for the F test in one way ANOVA with N observation and K treatment are								
			(a)	(K-N) and $(N-1)$	(b)	(K-1) and $(N-K)$					
			(c)	(N-1) and $(K-N)$	(d)	(N-K) and $(K-1)$					
		(iv)	In an experiment the primary purpose of blocking is to reduce								
			(a)	Bias	(b)	Confounding					
			(c)	Variation	(d)	Randomness	2				
UNW—24786						1	(Contd.)				

www.sgbauonline.com

- (C) Answer is one sentence each:
 - (i) What is surplus variable in LPP?
 - (ii) What is saddle point in game?
 - (iii) What is an expression for error sum of square in one way classification?
 - (iv) Which test is used in ANOVA?
- 2. (A) Define:
 - (i) Basic feasible solution
 - (ii) Constraint.
 - (B) Explain graphical method of solving linear programming problem.
 - (C) Explain linear programming technique.

OR

- 3. (P) Define the following terms:
 - (i) Optimum solution to LPP
 - (ii) Dual problem of LPP.
 - (Q) Explain matrix notation of linear programming problem.
 - (R) Explain the procedure of testing basic feasible solution for optimality of LPP.
- 4. (A) What do you mean by transportation problem? Give its mathematical formulation and list out the methods of finding initial basic feasible solution of the transportation problem.
 - (B) Explain Vogel's approximation method to find initial basic feasible solution to the transportation problem and solve the following transportation problem by this method:

OR

UNW -24786 2 (Contd.)

6

4

4

4

4

4

- 5. (P) Define a basic feasible solution, optimal solution and non-degenerate basic feasible solution to T.P.
 - (Q) Explain North West corner rule of finding solution to the transportation problem and solve the following by this method:

6

4

- 6. (A) Explain an assignment problem.
 - (B) There are 9 jobs, each of which must go through two machines P and Q in the order PQ, find the optimal sequence that minimizes total clapsed time:

Job Machines	1	2	3	4	5	6	7	8	9
Р	2	5	4	9	6	8	7	5	4
Q	6	8	7	4	3	9	3	8	11

4

(C) State and explain the maximin minimax theorem of game.

OR

7. (P) Solve the following assignment problem:

			Job	S	
		I	H	Ш	IV
	Α	8	26	17	11
Person	В				
	C	38	19	18 24	15
	D	19	26	24	10

4

UNW- 24786 3 (Contd.)

www.sgbauonline.com

	(Q)	Explain two person zero sum game	4
	(15)	(i) Optimal sequence	
		(ii) Idle time.	4
8.	(A)	Explain analysis of variance technique and reason of using F test for it.	4
0.	(B)	Derive various sum of squares for two way classification with one observation per cell	4
		Describe the analysis of variance table for two way classification with K observation per con-	
		OR	4
9.	(P)	State and explain the assumptions used in analysis of variance.	4
	(Q)	Explain the splitting of total sum of squares for one way classification.	4
	(R)		4
10		Define the following terms:	,
1.5.	(1 v)	(i) Experimental error	
		(ii) Treatment.	-4
	(B)	Explain the principle and importance of randomization in design of experiment.	4
	(C)		4
	, - ,	OR	
11.	(P)	Define the following terms:	
		(i) Test statistic F	
		(ii) Interaction effects.	4
	(Q)	Explain completely randomised design.	4
	(R)	Obtain the efficiency of RBD relative to CRD.	4
12.	(A)	Explain Latin square design experiment.	6
	(B)	Explain 2º factorial experiment.	6
		OR	
13.	(P)	Explain Latin square design by considering layout of 4 treatments.	6
	(Q)	Explain factorial experiment and Yates method for computing factorial effect.	6
UNW	v—247	786	225