M.C.M. (Semester—II) Examination OPERATION RESEARCH TECHNIQUES Paper—2 MCM 5

Time: Three Hours]

[Maximum Marks: 80

N.B.:— (1) Due credit will be given to neatness and adequate dimensions.

- (2) Assume suitable data wherever necessary.
- (3) Illustrate your answer with the help of neat sketches wherever necessary.
- (A) Explain limitation of Linear Programming.

4

(B) Use the Graphical method to solve the following LP problem:

Maximize $Z = 2x_1 + 4x_2$

Subject to constraint

$$x_1 + 2x_2 \le 4$$

$$2\mathbf{x}_1 + \mathbf{x}_2 \le 6.$$

6

(C) Explain application area of linear programming.

6

OR

2. (A) Use the simplex method to solve the following LP problem:—

Max.
$$Z = 20x_1 + 6x_2 + 8x_3$$

subject to

$$8x_1 + 2x_2 + 3x_3 \le 250$$

$$4x_1 + 3x_2 \le 150$$

$$2x_1 + x_2 \le 50$$

and $x_1, x_2, x_3 \ge 0$.

8

(B) Use the Big-M method to solve the following LP problem :—

Minimize $Z = 5x_1 + 3x_2$

Subject to constraints

$$2x_1 + 4x_2 \le 12$$

$$2x_1 + 2x_2 = 10$$

$$5x_1 + 2x_2 \ge 10$$

and $x_1, x_2 \ge 0$.

8

- (A) Solve the following game. Find:
 - (1) Value of the game
 - Does the game have a saddle point?

Piayer B Player A

Tasks (B) II Ш IV 8 17 26 11 4 В 13 28 26 Subordinates 38 19 18 15 26 24 19 10

How should the tasks be allocated to subordinates so as to minimize the total Man-hours?

(C) Determine an initial basic solution to the following transportation problem by using VAM method:-

	Dl	D2	D3	Supply
S1	7	3	4	2
S2	2	1	3	3
S3	3	4	6	5
Demand	4	1	5	

OR

- (A) Determine an initial basic feasible solution to the following transportation problem by 4. using:--
 - (1) NWCM (2) LCM

			Destination			
		D1	D2	D3	D4	Supply
	Α	11	13	17	14	250
Source	В	16	18	14	10	300
	C,	21	24	13	10	400
	Demand	200	225	275	250	

Tasks

I Π IIIŊ 8 26 17 11 13 28 4 26 Subordinates 38 19 13 15 19 26 24 10

How should the tasks be allocated to subordinates so as to minimize the total man-hours?

8

8

4

6

WPZ--2783

(B)

5. (A) Find the sequence that minimizes the total elapsed time and processing time in hours required to complete the following jobs:—

Job	:	1	. 2	3	4	5	6
Machine A	;	4	8	3	6	7	5
Machine B	:	6	33	7	2	8	4

(B) Explain:-

- (1) Purchase Cost
- (2) Carrying Cost
- (3) Ordering Cost
- (4) Total Inventory Cost.

8

8

OR

6. (A) Find the sequence that minimizes the total elapsed time required to complete the following tasks. Each job is processed in order ABC:—

Job	:	1	2	3	4	5
Machine A	:	5	7	6	9	5
Machine B	:	2	1	4	5	3
Machine C	:	3	7	5	6	7

8

(B) The following table gives the machine times in hours for 9 jobs and two machines:

Job	:	1	2	3	4	5	6	7	8	9
Machine I	:	2	5	4	9	6	8	7	5	4
Machine II	:	6	8	7	4	3	9	3	8	11

Find the elapse time and ideal time.

8

7. (A) A project has following activities and other characteristics:--

Activity	Time Estimates (weeks)					
	Optimistic	Most likely	Pessimistic			
1-2	1	3	5			
2–3	1	4	7			
2-4	1	3	5			
2-5	5	8	11			
36	2	4	6			
36 46	5	6	7			
57	4	5	6			
6–7	1	3	5			

- (1) Draw the network diagram.
- (2) Identify critical path.
- (3) Find out ET & LT.
- (4) Find out variance and standard deviation.

3+1+2+4

- (B) Explain:-
 - (1) Events
 - (2) Activities
 - (3) Activity-on-Node
 - (4) Activity-on-Arrow.

OR

- 8. (A) Explain:—
 - (1) Optimistic time
 - (2) Pessimistic time
 - (3) Most likely time.

(B) The table consists of the following activities and their estimated times:

Activity	Predecessor	Time (days)
A		2
В		1
C	A	3
D	А, В	2
Е	C, D	1
F	B, D	3
G	E, F	

- (1) Draw Network diagram.
- (2) Find critical path.
- (3) Calculate project completion time.
- (4) Calculate total float and free float for each activity.

8

10

6

6

6

- 9. (A) Give in detail the steps in Revised simplex method.
 - (B) What are the advantages and disadvantages of simulation methods?

OR

- 10. (A) What is simulation? Give its types.
 - (B) Use dual simplex method to solve the following LP problem:

Maximize $Z = 2x_1 - x_3$

Subject to constraints

$$\mathbf{x}_1+\mathbf{x}_2-\mathbf{x}_3 \geq 5$$

$$x_1 - 2x_2 + 4x_3 \ge 8$$

and
$$x_1, x_2, x_3 \ge 0$$

10